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Definitions: 

Statistic – value computed with any method from one or more random variables, used for statistical 

purpose, e.g. mean, variation, estimator of mean, test statistics etc. 

Null hypothesis (H0) – statement  that some relation between data is true, which cannot be conformed, 

but only rejected in favour of chosen alternative hypothesis (H1) using statistical significance test, e.g. 

samples are from distribution with mean 𝜇 = 𝜇0 (H0) versus 𝜇 ≠ 𝜇0 (H1) or versus 𝜇 < 𝜇0  (H2). Set of 

tested parameters is marked 𝜃𝑖, for hypothesis from previous example:  𝜃0 = {𝜇0}, 𝜃1 = ℝ\{𝜇0}, 𝜃2 =

(−∞, 𝜇0). 

Simple hypothesis – hypothesis which specify distribution completely, set 𝜃𝑖  contain only one element; 

complex hypothesis – set 𝜃𝑖  contains more than one element (e.g. previously mentioned 𝜃1). 

Parametric hypothesis -  hypothesis about one or more parameters of chosen distribution, 

nonparametric hypothesis – says nothing about parameters of distribution. 

Statistical (hypothesis) test – set of rules, which decide upon chosen data set in favour of or against 

rejection of particular null hypothesis. It includes: formulating a null hypothesis, formulating correct 

alternative hypothesis, choosing correct test statistic T, selecting significance level (𝜶) and critical 

region (W), computing value t of test statistic T from dataset, deciding whether reject null hypothesis 

or not (usually null hypothesis is rejected, when t is in the critical region). 

Significance level of the test (𝜶, probability of type I error, size) - probability of rejecting true H0, 𝜶 =

𝑷(𝒕 ∈ 𝑾|𝑯𝟎). Type I error is also called false positive. 

𝜷, probability of type II error - probability of not rejecting false H0, 𝜷 = 𝑷(𝒕 ∈ (ℝ\𝑾)|𝑯𝟏). Type II 

error is also called false negative. Power of the test: 𝟏 − 𝜷. 

Critical region (region of rejection, W) – set of values for which null hypothesis is rejected; it is 

computing based on chosen significance level 𝛼, type of alternative hypothesis (one-tailed or two-

tailed) and test statistic. 

p-value – “the probability under the assumption of null hypothesis, of obtaining a result equal to or 

more extreme than what was actually observed” [3]. Because it is probability, it can only have values 

from 0 to 1. The smaller p-value is, the more certainly null hypothesis should be rejected. With given 

significance level 𝜶 null hypothesis is rejected, when its p-value is smaller than 𝜶. 

Possible results of single hypothesis testing shows table below.   

 Not rejected H0, positive,            
not significant  

Rejected H0, negative,      
significant 

True H0 TP – True positive, 𝟏 − 𝜶 FN – False negative, type I error, 𝜶 

False H0 FP – False positive, type II error, 𝜷 TN – True negative, 𝟏 − 𝜷 
There are many test statistics, same for continuous data and others for discrete data. List below 

contains the most commonly used test statistics with short descriptions.  

n, n1, n2 – size of the tested population; s, s1, s2 – specific estimator of sample standard deviation; df – 

degrees of freedom; t: uses t-statistic, testing H0 under Student’s t-distribution; z: z-statistic, testing H0 

under normal distribution; d0 = 𝜇1 − 𝜇2; F – uses F-distribution; 𝜒2 − uses chi-square distribution; 



Significance tests of mean value μ, all under assumption of normal population(s) distribution or 

population(s) is(are) large enough:  

• one-sample z-test (H0: μ = μ0, known σ, 𝑧 = (𝑥̅ − 𝜇0)/𝜎 ∗ √𝑛), 

• one-sample t-test (H0: μ = μ0, unknown σ, 𝑡 =
𝑥̅−𝜇0

𝑠
∗ √𝑛, 𝑑𝑓 = 𝑛 − 1), 

• two-sample z-test (H0: 𝜇1 − 𝜇2 =  𝑑0, independent observations, 𝜎1 𝑎𝑛𝑑 𝜎2 are known, 𝑧 =

(𝑥1̅̅ ̅ − 𝑥2̅̅ ̅ − 𝑑0)/√
𝜎1

2

𝑛1
+

𝜎2
2

𝑛2
), 

• paired t-test (H0: 𝜇1 − 𝜇2 =  𝑑0, pairs of independent observations, each observation in pair is 

taken from the same object,  unknown σ, d0: 𝜇1 − 𝜇2, 𝑡 =
𝑑̅−𝑑0

𝑠
∗ √𝑛, 𝑑𝑓 = 𝑛 − 1), 

• two-sample pooled t-test (H0: 𝜇1 − 𝜇2 =  𝑑0, independent observations, 𝜎1 =  𝜎2 unknown, 

𝑡 = (𝑥1̅̅ ̅ − 𝑥2̅̅ ̅ − 𝑑0)/(𝑠 ∗ √
1

𝑛1
+

1

𝑛2
)), df= 𝑛1 + 𝑛2 − 2, 𝑠 = ((𝑛1 − 1) ∗ 𝑠1

2 + (𝑛2 − 1) ∗ 𝑠2
2)/

(𝑛1 + 𝑛2 − 2)) ), 

• two-sample unpooled t-test (H0: 𝜇1 − 𝜇2 = 𝑑0,  unequal variances, modified Welch's t-test, 

independent observations, 𝜎1 ≠ 𝜎2 both unknown, 𝑡 = (𝑥1̅̅ ̅ − 𝑥2̅̅ ̅ − 𝑑0)/√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
, 𝑑𝑓 =

 (
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
)

2

/ ((
𝑠1

2

𝑛1
)

2

/(𝑛1 − 1)  + (
𝑠2

2

𝑛2
)

2

/(𝑛2 − 1))). [4] 

Significance tests of variance value σ all under assumption of normal population and that population 

is big enough: 

• chi-squared test for variance (H0: 𝜎2 = 𝜎0
2, 𝜒2 = (𝑛 − 1) ∗ 𝑠2/𝜎0

2), 𝑑𝑓 = 𝑛 − 1) 

• two-sample F test for equality of variances (H0: 𝜎1
2 = 𝜎2

2,   𝐹 = 𝑠1
2/𝑠2

2,  𝑑𝑓1 = 𝑛1 − 1,  𝑑𝑓2 =

𝑛2 − 1  , is under assumption that all samples from set have the same variance) 

One-way analysis of variance (one-way ANOVA, used to check if there is any statistically significant 

difference means between groups of quantitative variables, under H0: 𝜇1 = 𝜇2 = ⋯ =  𝜇𝑘 , k-number 

of groups, assumptions: independent observations, normal or close to normal distribution, variations 

between groups are homogeneous, groups sizes are equal, F=(between-group variability)/(within-

group variability),  𝑑𝑓1 = 𝑘 − 1,  𝑑𝑓2 = 𝑛 − 𝑘. This test cannot specify which means differ between 

groups.) [5] 

Pearson's chi-squared test for fit of distribution (for categorical or semi categorical data, H0: 

observations from chosen distribution E0, independent observations, dataset big enough, random 

samples from population, 𝜒2 = ∑ (𝑛𝑖 − 𝑛 ∗ 𝑝𝑖)2𝑘
𝑖=1 /(𝑛 ∗ 𝑝𝑖), 𝑑𝑓 = 𝑘 −

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑒𝑟𝑠 − 1) 

Pearson's chi-squared test for independence (for categorical or semicategorical data of pairs of 

variables, uses s x r contingency table, H0: variables are independent – 𝑝𝑖𝑗 = 𝑝𝑖. ∗ 𝑝.𝑗, where 𝑝𝑖𝑗 – 

observed probability of cell i,j, 𝑝𝑖., 𝑝.𝑗 – observes probabilities of column i/row j, under assumptions: 

independent observations, dataset big enough, random samples from population, 𝜒2 =

∑ ∑ (𝑛𝑖𝑗 − 𝑛𝑖. ∗
𝑛.𝑗

𝑛
)𝑠

𝑗=1

2
𝑟
𝑖=1 /(𝑛𝑖. ∗ 𝑛.𝑗/𝑛) , 𝑑𝑓 = (𝑟 − 1) ∗ (𝑠 − 1)) 

Kolmogorov–Smirnov test (for continuous quantitative variables, nonparametric test of equality of 

one-dimensional probability distributions: one-sample K–S test checks equality of experimental 

probability distribution to selected probability distribution, two-sample K–S test check if  two dataset 

came from the same probability distribution; used to check if two one-dimensional distributions are 



statistically different; uses Kolmogorov–Smirnov statistic with cumulative distribution functions F(x) 

and 𝐹𝑛(𝑥), 𝐷𝑛 = sup |𝐹𝑛(𝑥) − 𝐹(𝑥)|  ) [6] 

Fisher's exact test ( assumptions the same as in chi-squared tests, uses 2x2 contingency table as below 

to check if true category from two possible was given to set of samples, valid for small samples, 𝑝 =

(𝑎 + 𝑏)! ∗ (𝑐 + 𝑑)! ∗ (𝑎 + 𝑐)! ∗ (𝑏 + 𝑑)! /(𝑎! ∗ 𝑏! ∗ 𝑐! ∗ 𝑑! ∗ 𝑛!) , 𝑛 = 𝑎 + 𝑏 + 𝑐 + 𝑑) 

 Is True Is False 

Given True a b 

Given False c d 

Mann–Whitney U test (nonparametric test comparing two independent populations of samples X,Y, 

which are ordinal meaning that for each pair of observations can tell, which is bigger, H0: 𝑃(𝑋 < 𝑌) =

𝑃(𝑋 > 𝑌), uses U-statistic) 

Wilcoxon signed-rank test (nonparametric test uses to compare two population using pairs of matched 

samples or to check if difference between median is not zero. Observations from two populations are 

paired based of their ranks.)  

Multiple hypothesis testing: 

When we test m multiple and independent hypothesis with significance level 𝜶 each, probability of 

making at least one type I error grows with m and probability of not making any decrease as in following 

expression: (1 − 𝛼)𝑚 < (1 − 𝛼)𝑚−1 < ⋯ < (1 − 𝛼), because m>1, 0 < 𝛼 < 1. Therefore many 

different methods to control type I error were invented, but before we shortly discuss them, let’s 

specify more common used types of error, those mentioned in [1] and terminology associated with 

multiple hypothesis testing. 

 positive, not significant  negative,  significant Total 

True H0 TP or U FN or V m0 

 False H0 FP or T TN or S m1 

Total P or W N or R m 

FWER (Family-wise error rate) –“probability of at least one type I error, 𝐹𝐸𝑊𝑅 = 𝑃(𝑉 ≥ 1)” [1] 

FDR (False Discovery Rate) 𝐹𝐷𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
=

𝑉

𝑅
, for 𝑅 > 0, 𝐹𝐷𝑅 = 0 for 𝑅 = 0;  

pFDR  (positive FDR) = 𝐸(𝑉/𝑅|𝑅 >  0); 

cFDR  (conditional FDR)  =  𝐸(𝑉/𝑅 |𝑅 =  𝑟) for E(x) – expected value of x, r – observed R (rejections); 

 mFDR  (marginal FDR) = 
𝐸(𝐹𝑁)

𝐸(𝑁)
=

𝐸(𝑉)

𝐸(𝑅)
; 

eFDR  (empirical FDR) =  𝐸(𝑉)/ 𝑟; 

Accuracy (ACC) =
𝑇𝑃+𝑇𝑁

𝑚
 for 𝑚 > 0; 

FPR (False Positive Rate) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=

𝐹𝑃

𝑚1
= 1 − 𝑇𝑁𝑅 for 𝑚1 > 0; 

FNR (False Negative Rate) =
𝐹𝑁

𝐹𝑁+𝑇𝑃
=

𝐹𝑁

𝑚0
= 1 − 𝑇𝑃𝑅 for 𝑚0 > 0; 

Sensitivity (True Positive Rate, TPR) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

𝑚0
= 1 − 𝐹𝑁𝑅 for 𝑚0 > 0; 

Specificity (True Negative Rate, TNR) = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
=

𝑇𝑁

𝑚1
= 1 − 𝐹𝑃𝑅 for 𝑚1 > 0; 



q-value – statistic measure similar to p-value. If p-value can be defined as  “minimum possible false  

positive rate (FPR) when calling that feature significant” [2], then q-value can be defined as “the 

minimum FDR that can be attained when calling that feature significant”[2] when R>0, so more 

technically it should be pFDR. Because FPR can be defined as “Pr(feature i is significant | feature i is 

truly null)” and pFDR as “Pr(feature i is truly null | feature i is significant) for any  i = 1, …, m” so they 

are strongly connected. Usually q-value is bigger than corresponding p-value, so it is more fitting 

(stronger) to use for multiple hypothesis testing.   

Let’s mark by p1, p2, …, pm p-values corresponding to null hypotheses H01, H02, …, H0m and 𝑝(1)  ≤ 𝑝(2)  ≤

 …  ≤  𝑝(𝑚), ordered p-values corresponding to H0(1), H0(2), …, H0(m). 

In all methods of controlling type I error we give up on controlling set significance level 𝜶 for each 

tested hypothesis and choose to control overall FWER or FDR at level q. Because FWER and FDR are 

equal (when all null hypotheses are true) and FDR ≤ 𝐹𝑊𝐸𝑅 (when number of true null hypotheses is 

smaller than m), methods that control the FWER control also FDR.  

Methods of controlling FWER: 

• Bonferroni – significant are hypotheses with 𝑝𝑖  ≤ 𝑞\𝑚, which ensure that overall FWER ≤ 𝑞; 

• Holm-Bonferroni – sequential algorithm, stronger than previous method, uses ordered p-

values, starting from the smallest 𝑝(1) for each 𝑝(𝑖) checks whether 𝑝(𝑖) <
𝑞

𝑚+1−𝑖
 and if it’s true 

rejects H0(i) and goes to i+1, otherwise stops. At the result FWER ≤ 𝑞 in strong sense; 

• Hochberg – very similar to previous method and even more powerful, starts from the biggest 

𝑝(𝑚) and doesn’t reject any hypothesis until 𝑝(𝑖) <
𝑞

𝑚+1−𝑖
, than it rejects H0(1) , …, H0(i), overall 

FWER ≤ 𝑞; 

• Hommel – similar to Hochberg’s, start with finding 𝑘 = 𝑚𝑎𝑥{𝑖 ∈ {1, … , 𝑚}: 𝑝(𝑚−𝑖+𝑗) >
𝑗𝛼

𝑖
𝑓𝑜𝑟 𝑗 = 1, . . , 𝑖}, than it rejects null hypotheses with 𝑝𝑖 ≤ 𝛼/𝑘 or all when no maximum 

exists; 

There are different methods used to control FDR, same of them use formula for density of p-values: 

𝑓(𝑝) = 𝜋0 ∗ 𝑓0(𝑝) + (1 − 𝜋0) ∗ 𝑓1(𝑝), where 𝑓0(𝑝) – density under null hypothesis, which uniform for 

continuous tests, 𝑓1(𝑝) – density under alternative hypothesis, usually unknown, 𝜋0- estimated 

parameter. 

Methods of controlling FDR (continuous tests): 

• Benjamini-Hochberg (BH) – rejects hypotheses H0(1) , …, H0(k) for 𝑘 = max{𝑖 ∶ 𝑝(𝑖) ≤
𝑖

𝑚
∗ 𝑞}; 

• Benjamini-Liu (BL) – similar to BH, first calculates critical values for each i: 𝛿𝑖 =

1−[1 − min (1, 𝑚 ∗
𝑞

𝑚−𝑖+1
)]1/(𝑚−𝑖+1), then finds 𝑘 = min {𝑖 ∶  𝑝(𝑖) > 𝛿𝑖} and rejects H0(1) , …, 

H0(k-1); 

• Storey – different from BH and BL, first fixes rejection regions {[0, 𝛾(𝑖)]} for each i (e.g. for 𝛾(𝑖) =

𝑝(𝑖), rejected region is: {𝑝(1), … , 𝑝(𝑖)}), then for each region estimates FDR and then chooses 

good enough estimate of FDR with corresponding set of p-values and so null hypothesis to 

reject; 

Controlling FDR of discrete test is less discussed in literature and has same problems, e.g. p-values 

density under null hypothesis usually is not uniform, moreover p-values depends on ancillary statistic, 

so as a result for each test density functions are usually different. Suggested solution is using modified 

p-values: midP-values, which are average of 𝑝(𝑖) and the next smallest possible, then using method BH. 



There are same methods, which enable future improve control over FDR called adaptive procedures, 

which use different approaches to estimate 𝑚0 = 𝜋0 ∗ 𝑚 and then replace m with 𝑚̂0. 

Methods of estimating 𝜋̂0 (and thus 𝑚̂0) for continuous tests: 

• Storey: 𝜋̂0 =
#(𝑝𝑖>𝜆)

𝑚∗(1−𝜆)
, 𝑓𝑜𝑟 𝜆 ∈ [0,1] – tuning parameter, #(S) number of elements in S; 

• Pounds and Cheng: 𝜋̂0 = {
min(1,2𝑝) 𝑓𝑜𝑟 𝑡𝑤𝑜 − 𝑠𝑖𝑑𝑒𝑑 𝑡𝑒𝑠𝑡𝑠

min(1, 2𝑡)  𝑓𝑜𝑟 𝑜𝑛𝑒 − 𝑠𝑖𝑑𝑒𝑑 𝑡𝑒𝑠𝑡𝑠
, where 𝑝 -mean of 𝑝𝑖,  𝑡 =

1

𝑚
∗

∑ [2 ∗ min (𝑝𝑖 , 1 − 𝑝𝑖)]𝑚
𝑖=1 . It is biased upwardl; 

• Location Based Estimator: 𝜋̂0 = (
1

𝑚
∗ ∑ [− log(1 − 𝑝𝑖)]𝑘𝑚

𝑖=1 )/𝑘!, where 𝑘 ≥ 0  – tuning 

parameter. It provides bias-variance balance and often works better than two abow; 

• Nettleton: computes 𝑚̂0 in following steps: 1) partitioning [0,1] in B equal-width  bins, 2) 

assuming all null hypotheses are true, set 𝑚0 = 𝜋0 ∗ 𝑚 = 𝑚, 3) calculating “the expected 

number of p-values for each bin given the current estimate of the number of true null 

hypotheses, 4) beginning with the leftmost bin, sum the number of p-values in excess of the 

expected until a bin with no excess is reached. 5) use the excess sum as an updated estimate 

of 𝑚1”  then update  𝑚0 = 𝑚 − 𝑚1, 6) return to 3) and repeat until 𝑚0 stops changes; 

Methods of estimating 𝜋̂0 (and thus 𝑚̂0) for discrete tests: 

• Pounds and Cheng: 𝜋̂0 = {
min(1,2𝑝) 𝑓𝑜𝑟 𝑡𝑤𝑜 − 𝑠𝑖𝑑𝑒𝑑 𝑡𝑒𝑠𝑡𝑠

min(1, 𝟖𝑡)  𝑓𝑜𝑟 𝑜𝑛𝑒 − 𝑠𝑖𝑑𝑒𝑑 𝑡𝑒𝑠𝑡𝑠
, rest the same as in for 

continuous tests; 

• Regression Method: used when mixture distribution can be estimated from data. 𝜋̂0 is 

estimated by slope regression equation of distribution function 𝑓(𝑝) = 𝜋0 ∗ 𝑓0(𝑝) +

(1 − 𝜋0) ∗ 𝑓1(𝑝),  with statistically estimated from data f(p), 𝑓0(𝑝) and 𝑓1(𝑝), and with 

assumption that (1 − 𝜋0) ∗ 𝑓1(𝑝) is constant; 

• Bancroft: adaptation of Nettleton method for continuous tests to discrete tests; 

• T-Methods: removing part of hypotheses with no power before any analysis, e.g. tests with p-

values which cannot be smaller than set significance level 𝜶. Then proceeding with one of the 

previous method;  

Gilberts Procedure – analogous to T-Methods, it proceeds with BH algorithm only on those tests with 

power.   

Same of the previous mention methods of controlling FWER/FDR  work under certain circumstances 

when assumption of independence among the tests is not fulfilled and tests are positive dependent 

(so 𝑃(𝑋 ∩ 𝑌) > 𝑃(𝑋) + 𝑃(𝑌) for X, Y positive dependent random variables). These methods are: BH, 

BL, Hochberg and Hommel (both use Simes inequality), adaptive Holm and Hochberg and same 

modification. To more complicated hypotheses we can use pairwise competition of part or all of their 

parameters, e.g. methods described by Turkey, Krammer and Games.  

There are also other problems and corresponding methods in this field, e.g. working with multiple 

hypotheses or using weighted p–values to incorporate same known information about hypotheses; 
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