
Marta Korpacz

Classnote: Statistical testing in latent variable models

A latent variable model (LVM) is a statistical model that takes into account observed
(manifest) and unobserved (latent) variables. The variables can be continuous or
categorical. We assume the Local Independence, meaning all observed variables are
independent if the latent variables are fixed.

The LVMs are useful because they could be used to generate new data and give insight into
the low-dimension representation of the high-dimensional data.

There are a lot of reasons why we want low-dimension representation:
- not all variables are important, so we don’t want the model to capture the noise or

irrelevant patterns, which can lead to overfitting (the situation where our model fits to
close to the current dataset like training set and therefore is unable to fir to additional
data/make correct predictions on test set).

- high dimensional data requires high computational efficiency and training the model
is more time-consuming.

- it is easier to interpret and visualize the model and data if the dimension is lower.

There are two main ways how the researcher can simplify the complex data: feature
selection, dimension reduction with techniques such as PCA or t-SNE, or a combination of
both. In this classnote, we will focus on feature selection and resampling methods which give
the researcher a wide knowledge about data and model parameters.

The goal of the feature selection is to choose the “best” features. There are a lot of different
methods and approaches (and also a lot of ways how the researcher can define “best”):

1) Filter methods
In this approach, some of the features are filtered out before the training. The filtering
is based on statistical test outcomes. This approach is independent of the LVM we
want to use and reduces the risk of overfitting.

- Univariate
These methods are pretty fast but are not able to capture feature
dependencies.

- ANOVA (Analysis of the Variance), which uses the F-statistic in case
of classification problems.

, where is the number of observations in𝐹 = 𝑖 = 1

𝐾

∑ 𝑛
𝑖
(𝑌

^

𝑖
 − 𝑌

^
)2 / (𝐾−1)

𝑖 = 1

𝐾

∑ (𝑌
𝑖𝑗

 − 𝑌
^

𝑖
)2/ (𝑁−𝐾)

𝑛
𝑖

the i-th group, denotes the overall mean of the data, K the number𝑌
^

of groups, N the overall sample size, the sample mean in the i-th𝑌
^

𝑖

group, the j-th observation in the i-th out of K groups.𝑌
𝑖𝑗

In simpler words F is the variance of the group means (Mean Square
Between) divided by mean of the within group variances (MSE).
Higher F suggests that the feature discriminate well between the
classes.

Marta Korpacz

Based on the Fs p-values are calculated. In this case null hypothesis
is that for the selected features there is no difference in means among
the groups. The feature selection can be then performed based on
some p-value threshold or simply selecting the chosen number of
features with highest F.
In R it can be performed using aov() from stats. In Python with
f_classif from sklearn.feature_selection.

- Kruskal, which uses Kruskal-Wallis rank-sum test:

, where N is the total number of𝐻 = (𝑁 − 1) 𝑖=1

𝐾

∑ 𝑛
𝑖
(𝑟

𝑖

^
− 𝑟

^
)2

𝑖 =1

𝐾

∑
𝑗=1

𝑛
𝑖

∑ (𝑟
𝑖𝑗

 − 𝑟
^
)2

observations, K is the number of groups, ni is the number of

observation in i-th group, is the average od all , where is the𝑟
^

𝑟
𝑖𝑗

𝑟
𝑖𝑗

rank of observation j form group i among all observations and is an𝑟
𝑖

^

average of ranks in group i. It’s analogical to ANOVA.
In R kruskal.test() from stats. In Python scipy.stats.kruskal()

- other tests that can be used for feature selection are for example
Chi-squared test, Mann-Whitney U test or Pearson correlation.

- Multivariate
Multivariate methods are slower than univariate but are capable of capturing
feature dependencies because they take into account also the combinations
of features.

- Maximum Relevance Minimum Redundancy (MRMR) uses a greedy
iterative approach. In each iteration, the algorithm selects one feature
with minimum redundancy to features chosen in previous iterations
and maximum relevance to the variable we want to explain.
In R there is a package mRMRe which is able to compute MRMR in
parallel: https://cran.r-project.org/web/packages/mRMRe/mRMRe.pdf
In Python you can use Pymrmre: https://pypi.org/project/pymrmre/

- Relief-based algorithms are a large group of algorithms based on an
approach proposed in 1992 by Kira and Rendell. Originally it was
designed for feature selection for binary classification tasks, but then
generalized for multiclass ones.
The method helps to find the features in which the examples from the
same class are closer in terms of Euclidean distance.
Step by step the simplest Relief algorithm:

1. We have a binary target and n features and create a vector w
with zeros in all places and length n.

2. Sample an example x from the data.
3. Find near-hit, so an example with the same label as x, which is

the closest.
4. Find the near-miss, so the closest one with a different label.
5. Update the w:

∀
𝐹 𝑖𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

 𝑤
𝐹
 <− 𝑤

𝐹
 − (𝑥

𝐹
 − 𝑛𝑒𝑎𝑟ℎ𝑖𝑡

𝐹
)2 + (𝑥

𝐹
− 𝑛𝑒𝑎𝑟𝑚𝑖𝑠𝑠

𝐹
)2

6. Go back to step 2.

https://cran.r-project.org/web/packages/mRMRe/mRMRe.pdf
https://pypi.org/project/pymrmre/

Marta Korpacz

There is an impletantion relief in FSinR R package
(https://search.r-project.org/CRAN/refmans/FSinR/html/relief.html) or
in FSelectorRcpp
(https://search.r-project.org/CRAN/refmans/FSelectorRcpp/html/relief.
html).
However the user should take into account that in high-dimensional
data the Euclidean distance is high even if all values from two
examples are close to each other. In this case, it’s better to use more
modern implementations such as VLSReliefF which has been proved
to be efficient even in the case of genome-wide association analysis11.
In this approach, the distance is calculated for only a subset of the
features.

2) Wrapper methods
In this case, the feature selection is based on the results of model training. It is
slower than other methods and the selection depends on the chosen model, but it
can be practical to test the interaction between features and the selected classifier.
The disadvantage of wrapper methods is that they can lead to overfitting as they take
into account all possible feature combinations, which can make the model too
complex. It is good to combine it with other techniques like resampling or
regularization like L1 and L2 (more on that later).

- Boruta is an R package proposed by M.B. Kursa and W. R. Rudnicki to find
the most relevant variables with The Boruta Algorithm. The algorithm is based
on Random Forest classification, which output VIM (Variable Important
Mesaure).
Step by step how it works:

1. Duplicate attributes (if we have less than 5 features, create still at
least 5 copies).

2. Shuffle duplicates to create so-called shadow attributes. This step
should remove the correlation with the target attribute.

3. Merge original attributes with the shadow ones.
4. Perform Random Forest classification to identify important and

unimportant attributes. Boruta package compares measures for
attributes with the values obtained for shadow ones.

5. Remove shadow attributes and attributes that have signitificantly
worse importance than the shadow ones. The attributes which have
significantly better importance than the shadow attributes will be called
Confirmed.

6. Go back to step 1, if the number of reiterations did not reach the
defined number of maximum runs or if not all attributes are Confirmed
or removed.

The authors claims that the solution is pretty fast: one hour per one million
(attributes * objects) on one core of modern CPU.
After using Boruta's algorithm, it may also be useful to check different
performance of different LVMs to achieve the best possible results (hybrid
method)9.
A CRAN linking: https://CRAN.R-project.org/package=Boruta

https://search.r-project.org/CRAN/refmans/FSinR/html/relief.html
https://search.r-project.org/CRAN/refmans/FSelectorRcpp/html/relief.html
https://search.r-project.org/CRAN/refmans/FSelectorRcpp/html/relief.html
https://cran.r-project.org/package=Boruta

Marta Korpacz

There is also a Python version based on scikit-learn:
https://pypi.org/project/Boruta/

- backward elimination is an intuitive approach in which we start to train a
chosen model with all features and examine it performance after removing the
subset of them. The method requires many repetitions of the training process
and can be time-consuming, so it can be used only for problems with a small
set of features.
Step by step:

1. Train a model using all features and evaluate its performance with
chosen metrics (accuracy, recall, etc,).

2. Remove one of the features and train the model again with the
remaining data. Evaluate the performance.

3. Compare the results with those obtained in step 1.
4. If the performance of the model from step 1. is better than the one

from step 2., add the feature back to the dataset, if not, keep it
removed.

5. Repeat the steps.
- Sequential Forward Selection in which we start with an empty set and in each

step we increase our set by one feature. In each iteration, we train the model
and evaluate the performance to see, in which case evaluation is better. The
subset that led to the best performance is then our base set to which we will
then use to next increase.

3) Embedded methods
This approach is in most cases something between filter and wrapper methods in
terms of time computing efficiency. It uses the learning algorithm in which the feature
selection is built in and is performed at the same time as classification or regression.

- Tree-based algorithms like RandomForest, XGBoost etc. can detect feature
interactions and can be used to get the feature importance. However, this
approach needs high computational efficiency in the case of high-dimensional
data, and in the case of random forest may be not able to detect redundant
features12.
Random Forest in R: https://CRAN.R-project.org/package=randomForest
Random Forest in Python:
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomF
orestClassifier.html

- Penalized methods like LASSO (Least Absolute Shrinkage and Selection
Operator), so linear regression with L1 regularization and Elastic Net which is
a combination between LASSO and Ridge Regression. Penalization favors
simpler models, which should decrease the risk of overfitting.
LASSO is enabled to set the coefficient to 0 (so the feature is not taken into
account) and is effective even in the case of high-dimensional datasets.

Moreover, there is a wide set of resampling methods, which allows the researcher to
estimate the variability of principal components, linear regression fitting, etc. Below you can
find a description of some of them:

https://pypi.org/project/Boruta/
https://cran.r-project.org/package=randomForest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Marta Korpacz

1) Bootstrap uses random sampling with replacement to create new data subsets to
explore the distribution of the statistic without a need to know data distribution. For
example, if we want to explore the average weight of dogs worldwide and we have
the data for 10.000 individuals, we can create multiple times bootstrap samples to
obtain many subsets with 10.000 examples. For each of them, we can calculate the
mean. Then obtained values can be used for standard error or confidence intervals
calculation.
This approach is powerful because it enables us to estimate the variability without
obtaining new data, which is not always possible or can be costly. However, it is
worth remembering that our results depend strongly on the initial data set. For
example, if the person providing the data only measured the weight of dogs coming
to a veterinary clinic specializing in small breeds and did not inform us about it, our
estimate would differ significantly from the true value.

2) Jackstraw is an approach introduced by and John D. StoreyNeo Christopher Chung
to identify the association between genomic variables and PCs of interest. Genomic
variables as the number of observed variables is much bigger than the number of
observations are especially challenging for data analysis.
Step by step:

1. We have a () matrix Y with row-wise mean-centered data,𝑚 𝑥 𝑛 𝑚 >> 𝑛
where m corresponds to the number of manifested variables and n is the
number of observations. Apply Singular Values Decomposition (SVD) and
focus on the first r PCs: Vr

T. r can be challenging to choose. One of the
methods is parallel analysis (which is implemented in package as
permutationPA), which compares observed percent variance explained for
each of the PCs to the one computed from a randomly permutated dataset.
It’s important to say that the package authors do not encourage the users to
blindly usage of this function and they refer to some papers (Anderson
(1963), Tracy and Widom (1996), Johnstone (2001)) regarding the challenge
of choosing r. Moreover if the user is unsure which value they should pick it is
suggest to use the higher one.

2. Calculate m F-statistics to measure if the variance of that variable is
explained by the selected PCs.

3. Randomly select and permutate s rows from Y (s <<m) to obtain Y`.
Permutated rows we will call synthetic variables.

4. Apply SVD on Y` = U`D`V``T to get V`rT.
5. Calculate null F-statistics from the s synthetic rows of Y` to see how it will look

where there is no real association between variables and PCs.
6. Repeat steps 3-5 B times to get s x B null F-statistics, which forms an

empirical distribution.
7. Compute p-values by counting how many times the null F-statistics are

greater than or equal to the F-statistic from step 2 and divide it by s x B.
8. Based on p-values identify variables significantly associated with the PCs of

interest.
The method can be used not only for PCA but also for ICA (independent component
analysis), K-means clustering and Mini Batch K-means, Partitioning Around Medoids
(PAM), or Angle-Based Joint and Individual Variation Explained (AJIVE)13.
Here you can find examples of usage in continuous and in categorical data:

mailto:n.chung@mimuw.edu.pl

Marta Korpacz

http://cran.nexr.com/web/packages/jackstraw/vignettes/jackstraw.pdf
A CRAN linking to the package: https://CRAN.R-project.org/package=jackstraw

References:

1) Kursa, M. B., & Rudnicki, W. R. (2010). Feature Selection with the Boruta Package.
Journal of Statistical Software, 36(11), 1–13. https://doi.org/10.18637/jss.v036.i11

2) An Introduction to Statistical Learning (https://www.statlearning.com) by James,
Witten, Hastie and Tibshirani

3) Neo Christopher Chung, John D. Storey, Statistical significance of variables driving
systematic variation in high-dimensional data, Bioinformatics, Volume 31, Issue 4,
February 2015, Pages 545–554, https://doi.org/10.1093/bioinformatics/btu674

4) Latent variable models and dimension reduction, Lecture 3, 1000-719bMSB, Neo
Christopher Chung

5) https://www.statistics.com/glossaries/
6) Basic Ideas and Examples. (2011). Wiley Series in Probability and Statistics, 1–18.

doi:10.1002/9781119970583.ch1
7) https://cran.r-project.org/web/packages/flashlight/flashlight.pdf
8) https://CRAN.R-project.org/package=MXM
9) Zhang, Shuguang & Khattak, Afaq & Matara, Caroline & Hussain, Arshad & Farooq,

Asim. (2022). Hybrid feature selection-based machine learning Classification system
for the prediction of injury severity in single and multiple-vehicle accidents. PloS one.
17. e0262941. 10.1371/journal.pone.0262941.

10) https://towardsdatascience.com/feature-selection-for-the-lazy-data-scientist-c31ba9b
4ee66

11) Eppstein, M. J., & Haake, P. (2008). Very large scale ReliefF for genome-wide
association analysis. 2008 IEEE Symposium on Computational Intelligence in
Bioinformatics and Computational Biology. doi:10.1109/cibcb.2008.4675767

12) Pudjihartono, N., Fadason, T., Kempa-Liehr, A., & O’Sullivan, J. (2022). A Review of
Feature Selection Methods for Machine Learning-Based Disease Risk Prediction.
Frontiers in Bioinformatics, 2.

13) Xi Yang, Katherine A. Hoadley, Jan Hannig, J.S. Marron, Jackstraw inference for
AJIVE data integration, Computational Statistics & Data Analysis (2023),
https://doi.org/10.1016/j.csda.2022.107649

14) https://en.wikipedia.org/wiki/F-test
and all other mentioned directly in the text.

More about LVMs, PCA and SVD can be found in previous classnotes: LVM & PCA,

http://cran.nexr.com/web/packages/jackstraw/vignettes/jackstraw.pdf
https://cran.r-project.org/package=jackstraw
https://doi.org/10.1093/bioinformatics/btu674
https://www.statistics.com/glossaries/
https://cran.r-project.org/web/packages/flashlight/flashlight.pdf
https://cran.r-project.org/package=MXM
https://towardsdatascience.com/feature-selection-for-the-lazy-data-scientist-c31ba9b4ee66
https://towardsdatascience.com/feature-selection-for-the-lazy-data-scientist-c31ba9b4ee66
https://doi.org/10.1016/j.csda.2022.107649
https://en.wikipedia.org/wiki/F-test

