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There are a few processes that change eukaryotic cell transcription profiles. Cells
can proliferate, differentiate and reprogramme. Each of the cells can have other rates of
transcriptional changes, because those processes are controlled by different stimuli and
cell to cell interactions. Moreover, cells even from the clonal population, might undergo a
different sequence of intermediate stages during differentiation and finally converge on
the same state. So, the cells of the same type can proceed the same changes in different
time. On the other hand, a cell can change its differentiation trajectory creating a
sublineage (branch). That's why analysis of transcriptomic experiments is so difficult.
Furthermore those assays (especially bulk expression measurements) can be affected by
mixture effects like Simpson’s paradox (a phenomenon in statistics, in which averages of
groups show a different trend from a one that describes each group) (Trapnell et al., 2014).

There is also a technical noise, resulting from sequencing, wet-lab protocol and its
equipment. It can be divided into shot noise, mRNA loss (dropout), capture efficiency,
sequencing efficiency. This noise is especially present in lowly expressed genes. To reduce
this one, external RNAs called spike-ins are introduced into cell lysis buffer. The
concentration of spike-ins should be equal in all cells in the experiment, thus stochastic,
technical noise can be easily modeled. In allele-specific expression patterns studies,
technical noise can be described as about 80% of total noise (Kim et al., 2015).

SPADE (Spanning-tree Progression Analysis of Density-normalized Events) -
machine learning algorithm that is used to reconstruct differentiation lineages and
intermediate states. Requires knowledge of marker genes. Applied to flow and mass
cytometry data it can help with the identification of cell types or with the analysis of
heterogeneity (Qiu et al., 2011).

Monocle - unsupervised algorithm that uses single-cell RNA-Seq measurements
collected at multiple time points. It increases the temporal resolution of transcriptome
dynamics. Using the learned process of differentiation, Monocle orders an
unsynchronised population of the cells into specific sublineages in pseudotime
(quantitative measure of a biological process). It pinpoints genes that are differentially
expressed and clusters them according to their kinetic trend in order to identify significant
events occurred during biological processes. It does not require a priori knowledge of
known transcription markers. Thus, it can be used to discover markers and regulators of
uncharacterized transition processes .



Figure 1. representing an overview of the Monocle workflow (Trapnell et al., 2014)

Monocle algorithm main steps (Figure 1):
1. choose manually genes according to experiment needs (up to 48 genes)
2. represent each cell as a vector of Rd , where d is a number of genes
3. reduce dimensionality through ICA (independent component analysis) to find one

dimensional function of differentiation in Rd

4. find a polygonal reconstruction of differentiation (as a continuous, smooth
function):

a. construct a weighted complete graph (nodes -> cells, edges -> weighted
distances between cells)

b. calculate MST (minimum spanning tree) and find longest path
c. construct rooted, ordered PQ tree that represents a family of good

orderings of the cells
d. search orderings that complies with the constraints and minimizes the total

distance of polygonal reconstruction in the embedding geometry
5. identify genes that are differentially expressed using generalized additive models

(GAMs)
6. perform K-medioid clustering on the predicted for each gene pseudotime (GAM)

Monocle was tested on human myoblasts and has contributed to identification of
eight previously unknown transcription inhibitors in those cells. Some of those
discovered transcription factors can repress differentiation by competition with
promyogenic activators. These results showed how proliferation and differentiation are
controlled during development and tissue regeneration (Trapnell et al., 2014).

Moreover Monocle is still an ongoing project (Qiu et al., 2017b). The new version of
this software takes advantage of reversed graph embeddings to robustly define the cells
trajectories. Another difference is another clustering method, that is inspired by Seurat



strategy (Satija et al., 2015). Monocle 2 also utilizes Census to support mRNA counts,
which can be more accurate and easier to manipulate in comparison with the expression
described by conventional measures like transcript per million - TPM. Those
improvements allow the use of new regression models, such as BEAM (branch expression
analysis modeling) (Qiu et al., 2017a).

Figure 2. representing an overview of the Monocle 2 workflow (Qiu et al., 2017b)

Census - converter of TPM or FPKM (Fragments Per Kilobase Million), derived from
single-cell RNA-seq without the spike-in control, to RPC (mRNAs per cell).

BEAM - generalized linear modeling strategy, that aims at finding genes with different
expression between two branches

There is also other software available for single-cell gene expression analysis. One
of them is SCANPY, which extends Monocle functionality. It is written in python language
and offers a range of methods for differential expression testing, pseudotime and
trajectory inference, clustering, visualization and gene regulatory networks simulations.
The authors claim that it can handle more than one million datasets generated from
single cell experiments (Wolf et al., 2018).
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