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Motivation
High-throughput RNA sequencing and microarrays has allowed for rapid development of
transcriptomics, surpassing methods that relied on northern blotting or qPCR. However, these studies
still had limitations in terms of resolution as they took measurements across the whole tissue (“bulk”),
which meant taking averages of expression levels and treating them as representative across cells in a
population. The benefits of this approach include having a clean homogeneous picture of the
expression levels, identifying representative markers of a tissue and being easier to handle in
comparative analyses. However, this posed a challenge, especially in the clinical context, for several
reasons:

1) Heterogeneity of cells - in multicellular organisms, different cells in a tissue can have
varying roles during biological processes forming subpopulations with distinct expression
profiles. This has further implications if there are imbalances in the representations of certain
subpopulations, especially for rare subpopulations.

2) Temporal processes - during temporal processes like cell differentiation or cell proliferation,
average expression levels can only show changes through time rather than the stages of the
process. This can be a problem when cells of the same population undergo the same process,
but in different time scales. This is often the case in more complex tissues where signals from
neighboring cells can influence the course of the temporal processes.

Single cell transcriptomics has the potential to tackle these challenges, bringing insights into the
heterogeneity of cells within tissues. Many diseases exhibit high levels of heterogeneity, driven by
factors such as exposure to mutagens like UV radiation or tobacco, which can induce mutations. This
leads to heterogeneity in tumor tissues, which has consequences on its proliferation and metastatic
potential. Moreover, understanding the immunological response to treatments and drugs would help
maximize efficacy and give accurate prognosis for such treatments.

Single cell RNA sequencing technology
In the workflow of single cell sequencing technologies, the process typically begins with a tissue
sample as the input material. The subsequent steps can be broken down into 3 stages: cell
dissociation, cell isolation and library construction.

First, single cell dissociation is the step where cells are separated to form a single cell suspension.
Next, single cells are isolated using either plate-based methods, where cells are placed into individual
wells on a plate, or droplet-based methods, which involve capturing cells in microfluidic droplets.
However, errors may occur during isolation, leading to the capture of doublets or multiplets,
non-viable cells, or no cells at all. Empty droplets are particularly common, as they are formed based
on the low concentration flow of input cells.

Following isolation, library construction takes place within each droplet. Each droplet contains
chemicals that facilitate the breakdown of cell membranes and the construction of libraries, including
mRNA capture, reverse transcription to cDNA, and amplification. At this stage, mRNA can be labeled
with a droplet-specific barcode and molecule-specific unique molecular identifier (UMI). Finally, the
constructed libraries are pooled together (multiplexed) for sequencing. The sequencing process
generates reads that can be further analyzed.



Bioinformatics analysis
The raw reads from sequencing are processed to get count matrices or read matrices (if UMIs were
used). Pre-processing reads usually involves quality control, assigning reads to barcodes
(“demultiplexing”), alignment to genome and quantification.

During quality control steps three covariates are mainly taken into consideration: number of counts
per barcode (count depth), number of genes per barcode and fraction of counts from
mitochondrial genes per barcode. Generally, quality control is based on looking for outlier peaks
that are filtered out by thresholding as they usually correspond to dying cells, cells with broken
membranes or doublets, e.g. barcodes with low count depth, few genes and high fraction of
mitochondrial counts are indicative of cells with cytoplasmic mRNA leaked out through a broken
membrane thus only mitochondrial mRNA is conserved. On the other hand, cells with high count and
large number of genes may be doublets. Other alternative methods for detecting doublets/multiplets
have been proposed in: DoubletDecon, DePasquale, Scrublet, Wolock, Doublet Finder. All these
methods use more advanced techniques to differentiate out the viable cells, e.g. deconvolution of
expression levels and checking if they match to more than one profile (DoubletDecon, DePasquale et
al. 2019).

The best practice is to analyze these three covariates jointly. Analyzing any of these in isolation can
lead to misidentification of signals. For example, a high fraction of mitochondrial counts alone may
indicate cells related to respiratory processes. Most of the time, it’s better to be as permissive as
possible to avoid filtering out viable cell populations. It’s also often the case that genes that are not
expressed in more than a certain number of cells are also filtered out to reduce the size of the count
matrix. Here, the threshold should be appropriate to the desired resolution needed in subsequent
analyses.

Normalization, data correction and dimensionality reduction
Normalization step helps compare gene count depths between cells more reliably by removing
unwanted variability due to the effects of count sampling. Most common normalization technique is
called “counts per million” (CPM). It involves scaling gene counts by the factor proportional to the
count depth per cell. This method assumes that any differences between gene expression levels arise
only due to sampling of cells.

It’s also possible to normalize using downsampling, which involves sampling reads only to a
predefined number of counts or fewer, attempting to simulate a case where all cells have been
sequenced to the same depth, making comparisons between expression levels more reliable. Other
methods for normalization exist that for example take into account the share a gene has in the counts
and then scale the expressions accordingly.

Data corrections may target technical and biological covariates like batch effects (technical
variability), dropout events (low amounts of mRNA in cells) or cell cycle effects. Linear regression
against a cell cycle score (implemented in Seurat and Scanpy) or LVMs may be used for regressing
out cell cycle effects. Other biological covariates such as mitochondrial gene expression, which
indicates cell stress, can be eliminated this way as well. Tools like ComBat allow for removing batch
effects, which are variations between cells that arise due to non-biological differences, like variations
in sample preparation procedures.



Dimensionality reduction can further help during feature selection, since not all genes have equal
contribution to the variability of the cells. Representing expression matrices in low dimensions can be
useful to describe the structure of the data with fewer dimensions than the number of genes while
identifying directions of high variability in the gene space. It helps visualize the data which in turn
will prove helpful in downstream analyses, like cluster analysis. Most commonly used dimensionality
reduction methods include PCA (linear), t-SNE and UMAP.

Cluster analysis
Cluster analysis is a valuable tool for identifying cell subpopulations within single-cell transcriptomic
data. To achieve this, dimensionality-reduced embeddings are commonly employed, alongside
distance-based clustering methods. Most notable methods include algorithms like k-means and
k-nearest neighbors. K-means identifies k clusters by finding k centroids and assigning cells to the
nearest one, typically by using Euclidean distance as the default metric, though other measures like
cosine similarity or correlation-based distances can also be used. On the other hand, KNN works by
connecting cells to k-nearest cells by metrics like the Euclidean distance in the dimension-reduced
space, offering faster performance by focusing solely on neighboring cells and reducing the search
space. This approach can be further optimized using techniques such as the Louvain method.

Once clusters are defined, marker genes help characterize each cluster and associate them with
potential biological labels. However, determining the exact biological context of each cluster remains
challenging, leading to the use of terms like "cell identity" rather than "cell type" to describe them.
Accurate annotation of these groups relies heavily on external gene marker databases, which are
increasingly available thanks to initiatives like the Human Cell Atlas.

Trajectory analysis
Given that most processes within living tissues unfold continuously, each dataset of expression levels
can be viewed as a snapshot of these dynamic processes across cells. This perspective enables a
unique form of analysis aimed at ordering the varying expression levels along a pseudotime
continuum, reflecting different stages of these processes and capturing transitions between cell
identities. At a high level, this analysis seeks to identify paths between cells that minimize expression
level differences, ultimately revealing patterns in cell progression similar to a developmental timeline,
often referred to as pseudotime. By regressing changing gene expression levels across pseudotime, it
is possible to discern smooth transitions at each step and annotate them with biological labels and
provide insight into the underlying genes and the progression of temporal processes. Tools such as
Monocle (Trapnell et al., 2014) and Wanderlust (Bendall et al., 2014) facilitate trajectory inference
within programming environments.
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