Introduction to Deep Neural Networks

Neo Christopher Chung

Lecture 10, 1000-719bMSB

• Image recognition: handwritten digits, ImageNet (1.2 mio images, 1000 classes) Krizhevsky,Sutskever, Hinton (2012)

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SIFT + FVs [7]			26.2%
1 CNN	40.7%	18.2%	_
5 CNNs	38.1%	16.4%	16.4%
1 CNN*	39.0%	16.6%	_
7 CNNs*	36.7%	15.4%	15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were "pre-trained" to classify the entire ImageNet 2011 Fall release. See Section 6 for details.

• Recommendation system

Neural collaborative filtering framework (He et al. 2017)

• Natural Language Processing

Style transfer

Super resolution

Deep Learning in Biology and Medicine

- Lots of challenges -- is it simply a fad?
- Learning from 50+ years of failures and successes
- Interpretability is important

e.g., Drug discovery, targets vs. off-targets

Toxic effects of biochemical or biologics

Predict cancer using medical images

Supervised learning

- Outputs (labels) are given for input data
- Learn a mapping function between input and labels
- Most popular use of deep learning and machine learning generally
- Focus of this week

Unsupervised learning

- Labels are not available or not used
- Discover patterns or internal/compact representation
- Identify the latent space or latent variables underlying the data
- Focus of next week

Reinforcement Learning

- Agent in an environment
- Learn to maximize reward
- Chess, Go, Starcraft, etc
- Self-driving cars, robotics, etc

Self-supervised learning

- Labels generated from input data
- Predict/generate next words
- Predict/generate next frames in video

Object localization

categorizing and locating an object in position and size using a bounding box

Object Detection

Identify the object category and locate the position using a bounding box for every known object within an image

Semantic segmentation

Identify the object category of each pixel for every known object within an image. Labels are class-aware.

White box models

how a certain inference/prediction is made is clear and explainable

As the number of variables grows

Alternatively, we employ sparse models, like the Lasso

Black box models

Nearly impossible to understand why a prediction is made

Due to # predictors, # parameters and non-linearity

Deep Neural Network

a Single-layer neural network (logistic regression)

b Multilayer neural network

Computational Graph: directed graph, w/ nodes are operations or variables

Х

Variables

Tensors = Inputs and outputs of nodes = (multi-dimensional) arrays

Simple Linear Regression

Linear Regression

Prediction: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

Computational Graph

Multiple Linear Regression

Consider 4 genes!

Non-linearity

Apply an activation function ϕ at the output of each node. E.g., Sigmoid function, Rectified Linear Unit (ReLU), etc.

Activation functions

Sigmoid function S(x) = $1 / (1+e^{-x})$

Rectified Linear Unit (ReLU) f(x) = max(0,x)

Wikipedia

Training: learning weights

Training: learning weights

Forward propagation

Calculating the value for the chosen (or all) node.

Backpropagation

Calculating the derivative. Use the chain rule.

Backpropagation tells us how to change weights

Deep Neural Networks

By stacking many hidden layers, a "deep" neural network is created

Shallow

<u>Convolutional Deep Belief Networks</u> for Scalable Unsupervised Learning of Hierarchical Representations, Lee et al. 2009 ICML

- End-to-end learning
- Deal with multimodal data effectively
- Abstraction from mathematical details
- Rapid prototyping, high-level libraries
- Unreasonable effectiveness
- Parameters >> Data

. . .

Gradient-Based Optimization

O'Reilly Media

Gradient-Based Optimization

 α = learning rate, the very number (step size) taken into the gradient direction

$$\frac{\partial E}{\partial w_{jk}} = \frac{\partial o_k}{\partial w_{jk}} \frac{\partial E}{\partial o_k}$$
$$= -2(t_k - o_k) \frac{\partial o_k}{\partial w_{jk}}$$

Putting everything together ..

$$w_{jk}^{\text{new}} = w_{jk}^{\text{old}} - \frac{\partial E}{\partial w_{jk}}$$

$$x_k = \sum_j w_{jk} o_j$$

Training may lead to overfitting

- Tension between optimization and generalization
- Optimization: performance on training data
- Generalization: performance on unseen data
- Split into training, test, AND validation sets

How to avoid overfitting

- More training data
 - Diverse, unbiased, random sampling
- Constrain information stored in the network
 - Smaller network
 - Weight regularization
 - Dropout
- Data augmentation
 - Geometric transformation
 - Combination of multiple parts
 - Erasing

The double-descent phenomenon

Reconciling modern machine-learning practice and the classical bias-variance trade-off

Mikhail Belkin^{a,b,1}, Daniel Hsu^c, Siyuan Ma^a, and Soumik Mandal^a

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (*A*) The classical U-shaped risk curve arising from the bias-variance trade-off. (*B*) The double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the "classical" regime) together with the observed behavior from using high-capacity function classes (i.e., the "modern" interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation threshold have zero training risk.

- Densely connected nets learn *global* patterns
- Convolutional neural network learn *local* patterns
- Learn translational invariant patterns
- Learn hierarchies of patterns and concepts

Well suited to process images

Convolution

Filter (3x3)

Filter on an Image (5x5 pixels) Convoluted Feature

A sum of element-wise multiplications

4	

Convolution

A given filter is applied throughout an image

Convolved Feature

Convolution

Classically, a filter is created that can detect an edge, create a blur, etc

Convolutional Image Filters as Feature Extractors

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

Pooling

- Reduces spatial dimension
- Lowers number of parameters
- Enables deeper layers to learn large high-level patterns

• Other downsampling strategies possible

Flatten

convolution + pooling layers

CNN takes an image + perform convolutions using a number of filters (per channel)

convolution + pooling layers

Feature extraction + Hierarchical representation

Feature extraction + Hierarchical representation Classification

Using combinations of convolutions, pooling, and other operations Using different activation functions and regularization Using many layers (deeper)

Hierarchy of concepts

Modelling transcription factor binding sites

of the DNA sequence

Visualization of Filter Response

Gradient descent in input space

- Loss function maximizes mean activation of some filter
- Start with blank input image
- Gradient descent to change input image

>
 \neg

Maximize filter activation

Obtain images each filter is most responsive too

Visualization of Filter Response

Visualization of Filter Response

