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Why Deep Learning?

e Image recognition: handwritten digits, ImageNet (1.2 mio images, 1000
C|aSSGS) Krizhevsky,Sutskever, Hinton (2012)

Model Top-1 (val) | Top-5 (val) | Top-5 (test)
SIFT + FVs [7] — - 26.2%

1 CNN 40.7% 18.2% —

5 CNNs 38.1% 16.4% 16.4 %

1 CNN* 39.0% 16.6% —

7 CNNs* 36.7% 15.4% 15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In ifalics are best results achieved by others. Models with an
asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.



Why Deep Learning?

e Recommendation system
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Neural collaborative filtering framework (He et al. 2017)



Why Deep Learning?

e Natural Language Processing
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Why Deep Learning?

Style transfer Super resolution




Deep Learning in Biology and Medicine

e Lots of challenges -- is it simply a fad?
e Learning from 50+ years of failures and successes

e Interpretability is important

e.g., Drug discovery, targets vs. off-targets
Toxic effects of biochemical or biologics

Predict cancer using medical images
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Supervised learning

e Qutputs (labels) are given for input data
e Learn a mapping function between input and labels
e Most popular use of deep learning and machine learning generally

e Focus of this week
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Unsupervised learning

e Labels are not available or not used
e Discover patterns or internal/compact representation
e Identify the latent space or latent variables underlying the data

e Focus of next week
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Reinforcement Learning

e Agentin an environment [siote & Rewardl
L J

e Learn to maximize reward

e Chess, Go, Starcraft, etc

SRS
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| Actions

e Self-driving cars, robotics, etc



Self-supervised learning

e Labels generated from input data
e Predict/generate next words

e Predict/generate next frames in video
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Image classification

Classify into one of n classes




Obiject localization

categorizing and locating an object in position and size using a bounding box




Object Detection

Identify the object category and locate the position using a bounding box
for every known object within an image
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Semantic segmentation

Identify the object category of each pixel for every known object within an image.
Labels are class-aware.

http://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf



http://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
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White box models

how a certain inference/prediction is made is clear and explainable
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As the number of variables grows

Gene Expression — Linear Regression Disease susceptibility

Even a simple linear regression may result in a massive
number of predictors.

Then, we may use feature selection as a preprocessing
step.

Alternatively, we employ sparse models, like the Lasso



Black box models

Nearly impossible to understand why a prediction is made
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Deep Neural Network

a Single-layer neural network (logistic regression)
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CompUtationaI Graph: directed graph, w/ nodes are operations or variables
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Z=X+Y

Operation

Variables



Z=X+Y

Tensors = Inputs and outputs of nodes = (multi-dimensional) arrays



Simple Linear Regression

Consider an influence of 1 gene’s
expression on a disease susceptibility

Q>‘/‘ Y =By * Byx

In deep learning,
this is called a bias




Y (e.g. disease susceptibility)

Linear Regression

10

Prediction: y = g, + B,

X (e.g. gene expression)

Computational Graph

)
O

y =By +ByX



Multiple Linear Regression

For sake of clarity, (often)
omit the bias/intercept term.

Consider 4 genes!



Hidden Layer

QXGRONO

Intermediate layer of operations
combines x; into a set of intermediate features, followed by
combining again into the final node

Outputy’ =
predicted price

26



QXGRONO

A= Boa ¥ By Xy By aXo + By Xt
By %y

B= Bog ¥ BygXs * BygXo + BypXst
BygXs

Y

This model is linear.

To learn more complex relationship, we add
non-linearity to this network



Non-linearity

Apply an activation function ¢ at the output of each node. E.g., Sigmoid function, Rectified Linear Unit (ReLU), etc

A= ¢(30,A + B1,AX1 + [32,Ax2 + |33le3+ |54,Ax4)

Y

This model is linear.

To learn more complex relationship, we add
non-linearity to this network

QXGRONO

B = q)(ﬁO,B + B'I,BX1 + B2,BX2 + ﬁS,BX3+ B4,BX4)



Activation functions

Sigmoid function
S(x)=1/(1+e™)
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Wikipedia



Training: learning weights

A= ¢(30,A + B1,AX1 + [32,Ax2 + |33le3+ |54,Ax4)

B = q)(ﬁO,B + B'I,BX1 + B2,BX2 + ﬁS,BX3+ B4,BX4)

B,A+B.B

QXGRONO

Predicted Y’
Actual Y



Training: learning weights

QXGRONO

A= ¢(30,A + B1,AX1 + [52,Ax2 + |33,Ax3+ 54,Ax4)

B = q)(ﬁO,B + I3'],BX1 + B2,BX2 + ﬁS,BX3+ B4,BX4)

Predicted y’

Actual y

Learner / Optimizer

Loss function e.g.,
MSE = 3(y,-y’)/n




Forward propagation

Calculating the value for the chosen (or all) node.

Coefficients are known. Compute A, B, etc

A= BO,A + B1,AX'I + l52,AX2 + ﬁ3,AX3+ l54,AX4

&




Backpropagation

Calculating the derivative. Use the chain rule.
dA/dx, = Bia

A= BO,A + B1,AX’I + l52,AX2 + B3,AX3+ l54,AX4

&



Backpropagation tells us how to change weights

A= ¢(30YA + B1,AX1 + [52,Ax2 + |33,Ax3+ 54’Ax4)

_________________________

_________________________

Predicted y’
Actual y

Learner / Optimizer
B= q)(BO,B + I3'],BX1 + B2,BX2 + ﬁS,BX3+ B4,BX4) |

Loss function e.g.,
& MSE:Z(yi'y’i)/n

Change weights!
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Deep Neural Networks

By stacking many hidden layers, a “deep” neural network is created

hidden layer 1 hidden layer 2 hidden layer 3

input layer
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hidden layer 1 hidden layer 2 hidden layer 3

input layer

Deep

Deep Layer

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of
Hierarchical Representations, Lee et al. 2009 ICML




Why Deep Learning?

e End-to-end learning
e Deal with multimodal data effectively

e Abstraction from mathematical details
e Rapid prototyping, high-level libraries
e Unreasonable effectiveness

e Parameters >> Data



Gradient-Based Optimization
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Gradient-Based Optimization

Inputs features Hidden layer(s) Output layer

J=1

Output o, _,

Output o, _,

Calculate the node at k™ layer

0. = S E W,;k0;
J

Node output ~ Weights W



input hidden ouput

weights
lager lager g lager node ervor = target - actual
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Putting everything together ..
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Training may lead to overfitting

e Tension between optimization and generalization
e Optimization: performance on training data
e Generalization: performance on unseen data

e Splitinto training, test, AND validation sets
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How to avoid overfitting

e More training data

o Diverse, unbiased, random sampling

e Constrain information stored in the network
o Smaller network
o  Weight regularization
o Dropout

e Data augmentation
o Geometric transformation

o Combination of multiple parts
o Erasing



The double-descent phenomenon

Reconciling modern machine-learning practice and
the classical bias—variance trade-off

Mikhail Belkin®®', Daniel Hsu®, Siyuan Ma?, and Soumik Mandal®
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Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias-variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation

threshold have zero training risk.



Convolutional Neural Networks

Densely connected nets learn global patterns

Convolutional neural network learn local patterns

“Cat 7

Learn translational invariant patterns o
Learn hierarchies of patterns and Concepts%
/| — -~

Well suited to process images




Convolution

Filter (3x3) Filter on an Image (5x5 pixels) Convoluted Feature
A sum of element-wise
1 0 1 1x1 1x0 1x1 0 0 multiplications
0| 1|0 0,1/1]1]0 4
1] 0 | 1 0. O, 1, /e
0{0(1(1]|0
0{1{1(0]|0




Convolution
A given filter is applied throughout an image

1x1 1x0 1x1 o 0
O 1,110 |4
0,/041,/1]1
OO T (1 (10
1|1 (00
Convolved
Image

Feature



Convolution
Classically, a filter is created that can detect an edge, create a blur, etc

Single filter




Convolutional Image Filters as Feature Extractors

Filter 2

\

Filter 1

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/



Pooling

e Reduces spatial dimension
e Lowers number of parameters
e Enables deeper layers to learn

large high-level patterns

e Other downsampling strategies
possible

20
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Flatten
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Convolutional Neural Networks

convolution + max pooling
nonlinearity |.e., downsampled

convolution + pooling layers

CNN takes an image +
perform convolutions using
a number of filters (per channel)

https://adeshpande3.qgithub.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/



https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

Convolutional Neural Networks

convolution + max pooling
nonlinearity

convolution + pooling layers

Feature extraction +
Hierarchical representation



Convolutional Neural Networks
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Hierarchical representation



Using combinations of convolutions, pooling, and other operations
Using different activation functions and regularization
Using many layers (deeper)

Flatten
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Hierarchy of concepts

Low-Level L g Mid-Level| |High-Level Lol Trainable
Feature Feature Feature Classifier
Vi 2 1 Y

https://towardsdatascience.com/build-your-own-convolution-neural-network-in-5-mins-4217c2cfo64f


https://towardsdatascience.com/build-your-own-convolution-neural-network-in-5-mins-4217c2cf964f

Modelling transcription factor binding sites
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Visualization of Filter Response

Gradient descent in input space

e Loss function maximizes mean activation of some filter
e Start with blank input image
e Gradient descent to change input image

——> Maximize filter activation

:> Obtain images each filter is most responsive too



Visualization of Filter Response




Visualization of Filter Response




