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Interpretability of DNN

Input Output

e Neural Networks are essentially a black box.
e Too many parameters, too much non-linearity, etc,
e |tis not clear why they make a certain classification.

e |Interpretability and explainability are the biggest challenge in adopting DNNs in life sciences
e In biology, we often want to know mechanistic properties (not simply prediction)
e In medicine, doctors want to know why a certain recommendation is made by an algorithm
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Two general approaches to interpretability

Interpretability of ML/DL can feel enigmatic. Where do we start?

Model-centric: explain how the model works in a “simplified” manner while being
faithful to the model

Human-centric: explain the model works in a “understandable” manner to
humans

— In the best case scenario, both would ideally converge to the same solution



Cardiovascular diseases, back in the days




Prognosis of a heart attack

Cardiovascular diseases the leading cause of death
Fatality rates from heart attacks were extremely high.

In 1980s, when a heart attack patient is admitted (University of California, San Diego
Medical Center), they would measure 19 variables within 24 hours:

Blood pressure, age, and 17 clinical variables known to be highly informative of the
patient's condition.

Additionally, temperature, humidity, upper atmospheric conditions, levels of airborne
pollutants, and other meteorological variables.

But they were not being used in clinical practices. How to improve the prognosis?



CART™

Breiman, Friedman, Olshen, Stone developed Classification and Regression Trees (CART).

Select a clinical variable, and split (e.g., binary).
No stopping rule, repeat until no more split is possible.
Minimizing a cost function, a greedy algorithm.

Decision trees allowed clinicians to trust the model and apply even without a computer.

Nowadays, more than 90% survival.
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What is interpretability?

“We define interpretable machine learning as the extraction of relevant
knowledge from a machine-learning model concerning relationships either
contained in data or learned by the model.” — Murdoch et al. (2019)

“Interpretability is the degree to which a human can understand the cause of a
decision” — Miller (2017)

“The higher the interpretability of a machine learning model, the easier it is for
someone to comprehend why certain decisions or predictions have been
made.” — Molnar (2022)




Why it's so difficult to define interpretability

What is an explanation?
Or a sufficient explanation?
What is understandable to humans?
What if an explanation is understandable to a doctor but not a patient?
How simple should an interpretable model be?
Is a simple model always more interpretable?
How do we compare explanations?

— No definition and no quantification



Interpretation in a larger context

Model-based (inherent) interpretability
Requires modification of existing models
Potentially lower performances
Direct understanding
Simpler models/systems

Predictive
Problem, Data,  accuracy
& Audience » Model

1

Post-hoc interpretability
No modification of a model
No change in performance
Potentially ambiguous interpretation

Descriptive
accuracy Post hoc

> analysis

Iterate

Murdoch et al. (2019)



Trade-off

Predictive accuracy: the performance of the trained ML model

Descriptive accuracy: the accuracy of the post-hoc interpretability

The full model (e.g., coefficients and weights)
Approximation

The top predictors

Examples/prototypes

Linear local approximation

Model compression

Decrease in Descriptive
accuracy




Why do we make a trade-off?

Increasing parameter space
e.g.. more genes and pixels

Increasing data!
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More complex models, non-linearity
eg., GAM, DNN

Better performance &
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Machine Learning and Interpretability

Simpler models/algorithms - More complex models/algorithms
Easier to interpret Harder to interpret




Large data means noisy data

Y=BX+E

Based on observed X and Y, B must be estimated.

In many systems, many variables are expected not to contribute to the

outcome.
e.g. background pixels in CT/PET images unimportant for tumor/survival/prognosis
e.g., most of genes not related to clinical phenotypes in a genome-wide association study

When data are collected from real world, all of estimated coefficients
will be likely hon-zero.




Regularization and shrinkage

Lasso adds a L, penalty to the least squares:

N
min {z:(yZ — Bo — :czrﬂ)z} subject to EP: 18] <t

b | i3 j=1

B=1{B, .. Bp]; t controls the regularization

Ridge (L, penalty)
Elastic Net (combining L, & L, penalties)



Lasso example: prostate cancer (Stamey et al. 1989)

Men who were about to receive radical prostatectomy

Levels of prostate-specific antigen and clinical variables:
age, cancer vol, , prostate weight, benign prostatic hyperplasia amount, etc

Fit a linear model, : ] P
with a lasso penalty .

3 ° ;

Shrinkage effect (t) was g ///// :

selected by cross validation g - , .

Y N X z

T T

Three clinical variables are NV
selected .

Fig. 5. Lasso shrinkage of coefficients in the prostate cancer example: each curve represents a
f:oeﬂicient (labelled on the right) as a function of the (scaled) lasso parameter s = ¢/ Bl (the intercept . . .
is not plotted); the broken line represents the model for § = 0.44, selected by generalized cross-validation Tibshirani (1996)



Shrinkage & variable selection

A large number of predictors — variable/feature selection.
Nowadays, a typical clinical studies would collect > hundreds of variables.
How to intelligently regularize is one of the central goals.

In the feature space of DNN:
Srivastava et al. 2014 Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Lemhadri et al 2021 A neural network with feature sparsity

Interpretability methods for neural networks also implicitly or explicitly:
Ross et al. 2017 The Neural LASSO: Local Linear Sparsity for Interpretable Explanations



How to interpret a black box model (e.g., DNNSs)

Shrinkage, variable selection, CART, and other aforementioned methods are
well applicable for ML/DL

Attempting to make senses out of diverse interpretability methods: global vs.

local explanations

Interpretability is an active area of research and there are no consensus on
what is the best or the most accurate approach

Explanations in practice require deep knowledge of application domains and
how “interpretability’ would be used subsequently

Post-hoc local explanations: importance estimators or saliency maps




Global Explanations

The overall behavior of a model with respect to certain features

Most often, we look at a change in a prediction (probability)

For non-linear models, global interpretability may not be accurate at all points
Depending on the methods, it may hide very important behaviors!

Some approximation is necessary to reasonably reduce the large surface area



Surrogate Model

Train an (inherently) interpretable model to emulate a blackbox model
Approximate the predictions of the underlying model

Must be as interpretable as possible

Efficient, fast, and affordable computation

Train the interpretable model using the predictions of a target model



Local Explanations

How do individual predictions (or probabilities) change with respect to the
change in features

Counterfactual logics is fundamental in casualty (or causal inference):
“what would happen to the prediction, if x changes”




Local interpretable model-agnostic explanations
(LIME) Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin

Select a data sample (i.e., observation)
Perturb them (multiple times) and obtain the predictions

Weight the new samples according to their distances to the target

Train a weighted interpretable model (typically, LM with a Lasso) only on
the new perturbed samples

5. Explain the prediction by interpreting

=

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f, Number of samples IV
6 ” Require: Instance z, and its interpretable version z’
the Iocal mOdel Require: Similarity kernel 7., Length of explanation K
Z{}
for i € {1,2,3,...,N} do
z; + sample_around(z")
Z + ZU (2, f(2:), m=(2:))
end for
w + K-Lasso(Z,K) > with z; as features, f(z) as target
return w




Shapley values (Shapley, 1951) Nobel prize 2012

To each cooperative game it assigns a unique distribution (among the players)
of a total surplus generated by the coalition of all players. (Wikipedia)

Explain the difference between the mean prediction and the actual prediction
(of the model)

Calculate a mean marginal contribution to the prediction across all
combinations of features

In modern ML/DL problems, computationally infeasible

SHAP (SHapley Additive exPlanations) Lundberg and Lee (2017)



Saliency (as general concept)

Yarbus, Eye Movements and Vision, 1967



Saliency Maps aka, feature importance/relevance, pixel attribution

e \Where does the model look at?
e We want to know importance of input features (pixels) for classification

e \We can visualize ‘importance scores’ in the same dimensions as inputs

DNN trained on ImageNet
Image is classified as “Pole”
What pixels were important?




Two Types of Saliency Maps

Perturbation-based forward propagation methods

Probability of being a cat

m Probability of being a cat

When a pixel/region is masked

Gradient-based backpropagation methods

- S 1
X class SZ]

known classes

L oS class

0:6733-



OCCI US|On Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Perturbation-based forward propagation methods

Probability of being a cat

Probability of being a cat
When a pixel/region is masked




OCCI u SIO n Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014

(c) Layer 5, strongest (d) Classifier, probability (e) Classifier, most
feature map projections of correct class probable class
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B Tennis ball
O Keeshond
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(a) Input Image (b) Layer 5, strongest feature map
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Gradient with backpropagation

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.

L aS class -

X Sclass

Sij (933@-]-

known classes

DNN is non-linear, thus Simonyan et al (2013) propose to estimate it via backpropagation.
Only the class of interest is being used, while all other classes are set to 0.

Results could be in 3 channels (RGB), collapsing into 2D
Some uses negative and positive values separately (also called ‘divergent’ in some old libraries)
Most often, people take absolute values



Forward propagation
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Backpropagation
Compute gradient of class score w.r.t. Image pixels
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Guided Backpropagation

Springenberg et al. (2014)
Emphasize positive contributions to the final outcome.
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Figure 1: Schematic of visualizing the activations of high layer neurons. a) Given an input image, we
perform the forward pass to the layer we are interested in, then set to zero all activations except one
and propagate back to the image to get a reconstruction. b) Different methods of propagating back
through a ReLU nonlinearity. c¢) Formal definition of different methods for propagating a output
activation out back through a ReLLU unit in layer /; note that the ’"deconvnet’ approach and guided
backpropagation do not compute a true gradient but rather an imputed version.



Rectified Gradients

Kim et al. (2020)

(a) Sample image and its saliency map.

Convolution Layer 1 Activations Convolution Layer 2 Activations

Convolution Layer 3 Activations Convolution Layer 4 Activations

e
i

b) Intermediate layer activations.

Figure 2: Feature map visualization for an image with a noisy saliency map.



guided R! !
backpropagation: ¢ ¢

Rectified Gradients
Kim et al. (2020) introduces an arbitrary thresholding to Guided Backpropagagtion

Guided Backprop

Forward Pass Saliency Map Deconvolution
(Baehrans et al, Simonyan et al) (Zeiler et al) (Springenberg et al)
() (1) (V) (¥)
ONON® I
QU QOO OO0 OO0 210 ¢
OO 00000 VOO VOO0 OEE

Instead of thresholding at 0, we introduce 1

g 42 '

@ Linear Neuron

@ Threshold Unit Activated
Threshold Unit Deactivated

@ Backward ReLU Activated
Backward ReLU Deactivated

Input Image @ Forward ReLU Activated
Forward ReLU Deactivated

Figure 1: Comparison of attribution methods. See Appendix F.1 for details on the visualization.



Integrated Gradients
Sundararajan et al. (2017)

We consider the straightline path (in R™) from the baseline
z’ to the input z, and compute the gradients at all points
along the path. Integrated gradients are obtained by cu-
mulating these gradients. Specifically, integrated gradients
are defined as the path intergral of the gradients along the
straightline path from the baseline z’ to the input z.

The integrated gradient along the i** dimension for an input

z and baseline z’ is defined as follows. Here, 6;;513) is the

gradient of F'(z) along the i*" dimension.

1
IntegratedGrads, (z) ::= (z; — ;) x/ OF (= +g‘mxi($_m ) doy
1)

a=0

Figure 1. Three paths between an a baseline (r1,72) and an input
(s1, s2). Each path corresponds to a different attribution method.
The path P; corresponds to the path used by integrated gradients.



Integrated Gradients
Sundararajan et al. (2017)

1. Obtain a series of images between the original image and the
baseline image (e.g., black)

2. Calculate importance scores of those multiple images

3. Calculate average importance scores

...accumulate local gradients
B,

Difference from baseline -~
—_—— /1 O0f (2’ + a(z — )
a=0

iIG(f’mv CC,> = (wl - x,i) X ox; i

N~

From baseline to input. ..



Integrated Gradients
Sundararajan et al. (2017)

Original image Top label and score

w e
:

Top label: reflex camera

Score: 0.993755

Top label: fireboat
Score: 0.999961

Integrated gradients

Gradients at image




Smooth Gradients

Smilkov et al. (2017) “SmoothGrad: removing noise by adding noise”

1.  Add a slight (i.i.d. Gaussian) noise to the
original image, creating multiple versions

2. Calculate importance scores (e.g., vanilla
gradients) of those multiple ‘noisy’ images

05, /ox;(z + te)

-0.02

-0.06

0.0 02 04 06 08 10

3. Calculate average importance scores '

Figure 2. The partial derivative of S. with respect to the RGB val-
ues of a single pixel as a fraction of the maximum entry in the
gradient vector, max; % (), (middle plot) as one slowly moves
away from a baseline imzfge x (left plot) to a fixed location = + €
(right plot). € is one random sample from A/(0, 0.01%). The fi-
nal image (z + e€) is indistinguishable to a human from the origin
image x.



Smooth Gradients

Smilkov et al. (2017) “SmoothGrad: removing noise by adding noise”

Noise level: 0% 5% 10% 20% 30% 50%

Figure 3. Effect of noise level (columns) on our method for 5 images of the gazelle class in ImageNet (rows). Each sensitivity map is
obtained by applying Gaussian noise N'(0, %) to the input pixels for 50 samples, and averaging them. The noise level corresponds to
0/(wmam o mmi'n)-



Smooth Gradients

Smilkov et al. (2017) “SmoothGrad: removing noise by adding noise”

Gradient

Vanilla Integrated Guided BackProp | SmoothGrad
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\ High Impact
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Sanity Checks for Saliency Map adebayo et ai 2018)

Integrated Gradient
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Parameter randomization on Inception

Cascading randomization
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Data (label) randomization on CNN for MNIST

Absolute-Value Visualization Diverging Visualization
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Fidelity (faithfulness) evaluation srocki and chung 2023

Interpretability Method
i.e., importance estimator

Neural Network

trained on data X
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Fidelity (faithfulness) evaluation
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Considerations & Pitfalls

e What humans think as important are independent of pixels that the model
considers to be important

e Don’t evaluate based on visually appealing characteristics
e The samples in a dataset (e.g., ImageNet) have structures
e Complex methods to tackle this problem exacerbate/hide the problem

e How do we evaluate saliency maps when we don’t have a ground truth?




