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Interpretability of DNN

● Neural Networks are essentially a black box.
● Too many parameters, too much non-linearity, etc,
● It is not clear why they make a certain classification.

● Interpretability and explainability are the biggest challenge in adopting DNNs in life sciences
● In biology, we often want to know mechanistic properties (not simply prediction)
● In medicine, doctors want to know why a certain recommendation is made by an algorithm



Interpretable Machine Learning (Molnar)



Two general approaches to interpretability
Interpretability of ML/DL can feel enigmatic. Where do we start? 

Model-centric: explain how the model works in a “simplified” manner while being 
faithful to the model 

Human-centric: explain the model works in a “understandable” manner to 
humans

→ In the best case scenario, both would ideally converge to the same solution



Cardiovascular diseases, back in the days



Prognosis of a heart attack
Cardiovascular diseases the leading cause of death

Fatality rates from heart attacks were extremely high. 

In 1980s, when a heart attack patient is admitted (University of California, San Diego 
Medical Center), they would measure 19 variables within 24 hours:

Blood pressure, age, and 17 clinical variables known to be highly informative of the 
patient's condition.

Additionally, temperature, humidity, upper atmospheric conditions, levels of airborne 
pollutants, and other meteorological variables.

But they were not being used in clinical practices. How to improve the prognosis?



CART™
Breiman, Friedman, Olshen, Stone developed Classification and Regression Trees (CART).

Select a clinical variable, and split (e.g., binary).
No stopping rule, repeat until no more split is possible.
Minimizing a cost function, a greedy algorithm. 

Decision trees allowed clinicians to trust the model and apply even without a computer.

Nowadays, more than 90% survival.

Krzywinski and Altman (2017) Breiman et al  (1984) 



What is interpretability?
“We define interpretable machine learning as the extraction of relevant 
knowledge from a machine-learning model concerning relationships either 
contained in data or learned by the model.” – Murdoch et al. (2019)

“Interpretability is the degree to which a human can understand the cause of a 
decision” – Miller (2017)

“The higher the interpretability of a machine learning model, the easier it is for 
someone to comprehend why certain decisions or predictions have been 
made.” – Molnar (2022)



Why it’s so difficult to define interpretability
What is an explanation?

Or a sufficient explanation?

What is understandable to humans?

What if an explanation is understandable to a doctor but not a patient? 

How simple should an interpretable model be?

Is a simple model always more interpretable? 

How do we compare explanations?

→ No definition and no quantification



Interpretation in a larger context 
Model-based (inherent) interpretability

Requires modification of existing models
Potentially lower performances
Direct understanding 
Simpler models/systems

Post-hoc interpretability
No modification of a model
No change in performance
Potentially ambiguous interpretation

Murdoch et al. (2019)



Trade-off

Predictive accuracy: the performance of the trained ML model

Descriptive accuracy: the accuracy of the post-hoc interpretability

The full model (e.g., coefficients and weights)
Approximation 
The top predictors
Examples/prototypes
Linear local approximation
Model compression D
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Why do we make a trade-off?

Increasing data!

Increasing parameter space
e.g., more genes and pixels

Fuller understanding &
Less interpretable

More complex models, non-linearity
e.g., GAM, DNN

Better performance & 
Less interpretable

Lin and Alessio 2009Pennisi 2008

Altman & Krzywinski (2018)



Machine Learning and Interpretability

Simpler models/algorithms
Easier to interpret

More complex models/algorithms
Harder to interpret

Linear Model
Kernel Methods

Generalized Linear Models Generalized Additive Models

Decision trees Rules-based

Bagging, Boosting, Ensemble Models

Perceptron  Sparse DL Convolutional NN



Large data means noisy data

Y = BX + E

Based on observed X and Y, B must be estimated. 

In many systems, many variables are expected not to contribute to the 
outcome.
e.g., background pixels in CT/PET images unimportant for tumor/survival/prognosis
e.g., most of genes not related to clinical phenotypes in a genome-wide association study

When data are collected from real world, all of estimated coefficients 
will be likely non-zero.



Lasso adds a L1 penalty to the least squares:

Regularization and shrinkage

Ridge (L2 penalty)

Elastic Net (combining L1 & L2 penalties)

B = {B1, …, Bp}; t controls the regularization



Lasso example: prostate cancer (Stamey et al. 1989)

Men who were about to receive radical prostatectomy

Levels of prostate-specific antigen and clinical variables:
age, cancer vol, , prostate weight, benign prostatic hyperplasia amount, etc

Tibshirani (1996)

Fit a linear model,
with a lasso penalty

Shrinkage effect (t) was 
selected by cross validation

Three clinical variables are 
selected 



Shrinkage & variable selection
A large number of predictors → variable/feature selection.

Nowadays, a typical clinical studies would collect > hundreds of variables.

How to intelligently regularize is one of the central goals.

In the feature space of DNN:
Srivastava et al. 2014 Dropout: A Simple Way to Prevent Neural Networks from Overfitting
Lemhadri et al 2021 A neural network with feature sparsity 

Interpretability methods for neural networks also implicitly or explicitly:
Ross et al. 2017 The Neural LASSO: Local Linear Sparsity for Interpretable Explanations



How to interpret a black box model (e.g., DNNs)

Shrinkage, variable selection, CART, and other aforementioned methods are 
well applicable for ML/DL

Attempting to make senses out of diverse interpretability methods: global vs. 
local explanations

Interpretability is an active area of research and there are no consensus on 
what is the best or the most accurate approach

Explanations in practice require deep knowledge of application domains and 
how `interpretability’ would be used subsequently 

Post-hoc local explanations: importance estimators or saliency maps



Global Explanations
The overall behavior of a model with respect to certain features

Most often, we look at a change in a prediction (probability)

For non-linear models, global interpretability may not be accurate at all points

Depending on the methods, it may hide very important behaviors!

Some approximation is necessary to reasonably reduce the large surface area



Surrogate Model

Train an (inherently) interpretable model to emulate a blackbox model

Approximate the predictions of the underlying model

Must be as interpretable as possible 

Efficient, fast, and affordable computation

Train the interpretable model using the predictions of a target model



Local Explanations

How do individual predictions (or probabilities) change with respect to the 
change in features

Counterfactual logics is fundamental in casualty (or causal inference):
“what would happen to the prediction, if x changes”



Local interpretable model-agnostic explanations 
(LIME) Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin

1. Select a data sample (i.e., observation)
2. Perturb them (multiple times) and obtain the predictions
3. Weight the new samples according to their distances to the target
4. Train a weighted interpretable model (typically, LM with a Lasso) only on 

the new perturbed samples
5. Explain the prediction by interpreting

the “local” model 



Shapley values (Shapley, 1951) Nobel prize 2012

To each cooperative game it assigns a unique distribution (among the players) 
of a total surplus generated by the coalition of all players. (Wikipedia)

Explain the difference between the mean prediction and the actual prediction 
(of the model)

Calculate a mean marginal contribution to the prediction across all 
combinations of features

In modern ML/DL problems, computationally infeasible

SHAP (SHapley Additive exPlanations) Lundberg and Lee (2017)



Saliency (as general concept)

Yarbus, Eye Movements and Vision, 1967



Saliency Maps aka, feature importance/relevance, pixel attribution

● Where does the model look at?

● We want to know importance of input features (pixels) for classification

● We can visualize ‘importance scores’ in the same dimensions as inputs

DNN trained on ImageNet
Image is classified as “Pole”
What pixels were important?



Two Types of Saliency Maps

Perturbation-based forward propagation methods

DNN Probability of being a cat

DNN
Probability of being a cat
When a pixel/region is masked

Gradient-based backpropagation methods



Occlusion

Perturbation-based forward propagation methods

DNN Probability of being a cat

DNN
Probability of being a cat
When a pixel/region is masked

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014



Occlusion Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014



Gradient with backpropagation
Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.

DNN is non-linear, thus Simonyan et al (2013) propose to estimate it via backpropagation.
Only the class of interest is being used, while all other classes are set to 0.

Results could be in 3 channels (RGB), collapsing into 2D
Some uses negative and positive values separately (also called ‘divergent’ in some old libraries)
Most often, people take absolute values



Forward propagation
Compute pbird



Backpropagation
Compute gradient of class score w.r.t. Image pixels



Guided Backpropagation
Springenberg et al. (2014)
Emphasize positive contributions to the final outcome.



Rectified Gradients
Kim et al. (2020)



Rectified Gradients
Kim et al. (2020) introduces an arbitrary thresholding to Guided Backpropagagtion

Instead of thresholding at 0, we introduce τ



Integrated Gradients
Sundararajan et al. (2017)



Integrated Gradients
Sundararajan et al. (2017)

1. Obtain a series of images between the original image and the 
baseline image (e.g., black)

2. Calculate importance scores of those multiple images
3. Calculate average importance scores



Integrated Gradients
Sundararajan et al. (2017)



Smooth Gradients
Smilkov et al. (2017) “SmoothGrad: removing noise by adding noise”

1. Add a slight (i.i.d. Gaussian) noise to the 
original image, creating multiple versions

2. Calculate importance scores (e.g., vanilla 
gradients) of those multiple ‘noisy’ images

3. Calculate average importance scores 



Smooth Gradients
Smilkov et al. (2017) “SmoothGrad: removing noise by adding noise”



Smooth Gradients
Smilkov et al. (2017) “SmoothGrad: removing noise by adding noise”



Sanity Checks for Saliency Map Adebayo et al (2018)



Parameter randomization on Inception



Data (label) randomization on CNN for MNIST



Fidelity (faithfulness) evaluation Brocki and Chung 2023



Fidelity (faithfulness) evaluation



Considerations & Pitfalls
● What humans think as important are independent of pixels that the model 

considers to be important

● Don’t evaluate based on visually appealing characteristics

● The samples in a dataset (e.g., ImageNet) have structures

● Complex methods to tackle this problem exacerbate/hide the problem

● How do we evaluate saliency maps when we don’t have a ground truth?  


