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Unsupervised learning 
● Labels are not available or not used

● Discover patterns or internal/compact representation

● Identify the latent space or latent variables underlying the data

● Self-supervised learning may be fall under unsupervised learning

● Clustering and principal component analysis are two major techniques 



Previously
● Clustering (k-means, hierarchical, etc)

● Principal component analysis, independent component analysis,  factor analysis

● Latent variable models



Autoencoder
Non-linear generalization of PCA (Kramer, 1991)
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Autoencoder
H contains encoding vectors, that represent learned attributes

Encoder network converts the input data into numeric values for H 

Decoder network knows how to take that numeric values in  H to reconstruct

Often the encoder and decoder are mirrored architectures, but not necessarily



Why non-linear generalization of PCA?

https://www.jeremyjordan.me/autoencoders/



Rank of H
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rank(H) < rank(X) results in compression.
rank(H) > rank(X) is overcompleted.



Denoising autoencoder
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Shortcomings of Autoencoder
Need for data

Hyperparameters, architectural choices

Training vs. test data

Decoding codes are typically not continuous or complete

Learnt attributes are ʻstaticʼ and may not have relative relevance



Variational autoencoder
Encoding a probability distribution for each latent attribute
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Statistical Model
The data x is generated from latent variable z. When we have a large amount of 
data, then we hope to estimate z in some ways.

Ideally, we would like to compute

p(z|x) = p(x|z)p(z) / p(x)

However, p(x) is intractable since p(x)=∫p(x|z)p(z)dz



Variational Inference
Instead of a intractable distribution p(z|x), we introduce another tractable 
distribution q(z|x). 

We compare p(z|x) and q(z|x) by Kullback–Leibler divergence (also called relative 
entropy). And if we minimize the KL divergence, we get two distributions to be very 
similar.

min KL( q(z|x) || p(z|x) )



Variational Autoencoder
● Generative model: sampling from latent space
● Desired: continuity and completeness
● Regularisation/constraint needed

Kingma and Welling 2014



Variational Autoencoder
● Improvement: learn distributions instead of points

● Latent space obtained by sampling

● Force distribution to be standard normal   



VAE Loss Function

  Reconstruction error  +   Kullback-Leibler (KL) divergence

● We are minimizing this loss function, iteratively resulting in 
○ Reducing the reconstruction error
○ Encouraging q(z|x) to be similar to the true distribution p(z)

Kingma and Welling 2014



VAE on MNIST
Original

Reconstructed



PCA on MNIST
https://gitlab.com/erikfransson/pc
a-mnist-testing



On gene expression

Latent Space

Eraslan et al. 2019 NRGL



VAE on CelebA
Large-scale CelebFaces Attributes dataset



Interpretability of unsupervised deep learning
● Concept vectors (Brocki and Chung, 2020)

● Latent space encodes high-level concepts

● Concept vectors obtained via averaging

● Manipulation of attributes



Concept Score
● Which input features contributes to 

the concept vectors?
● Calculate a dot product with the 

concept vectors.
● We can create saliency maps for 

unsupervised models
● Concepts from labels (easy 

supervised cases)
● Unsupervised cases using 

clustering, correlations, etc

Brocki and Chung 2020



CelebA Concept Saliency Maps

Brocki and Chung 2020



Spatial Transcriptomics
● Tissue transcriptome usually by RNA-sequencing

● Problem: no spatial resolution, important for tissue functionality

● Stahl et al.: positional barcodes before RNA-seq

Stahl et al 2016



Spatial Transcriptomics

Stahl et al 2016



Spatial Transcriptomics
Gene expression in different areas

Stahl et al 2016



Spatial Transcriptomics
● Dimension reduction with t-sne or PCA

● Clusters map to morphological layers

● Results for t-sne:

Stahl et al 2016



Spatial Transcriptomics
Results for PCA

Stahl et al 2016


