Unsupervised Deep Learning and Spatial Transcriptomics

Neo Christopher Chung

Lecture 12, 1000-719bMSB

Unsupervised learning

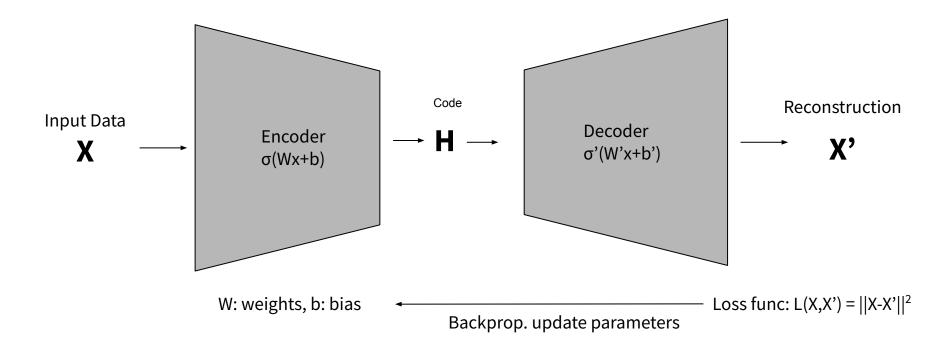
- Labels are not available or not used
- Discover patterns or internal/compact representation
- Identify the latent space or latent variables underlying the data
- Self-supervised learning may be fall under unsupervised learning
- Clustering and principal component analysis are two major techniques

Previously

- Clustering (k-means, hierarchical, etc)
- Principal component analysis, independent component analysis, factor analysis
- Latent variable models

Autoencoder

Non-linear generalization of PCA (Kramer, 1991)



Autoencoder

H contains encoding vectors, that represent learned attributes

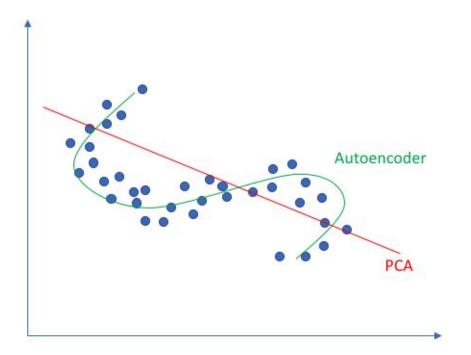
Encoder network converts the input data into numeric values for **H**

Decoder network knows how to take that numeric values in **H** to reconstruct

Often the encoder and decoder are mirrored architectures, but not necessarily

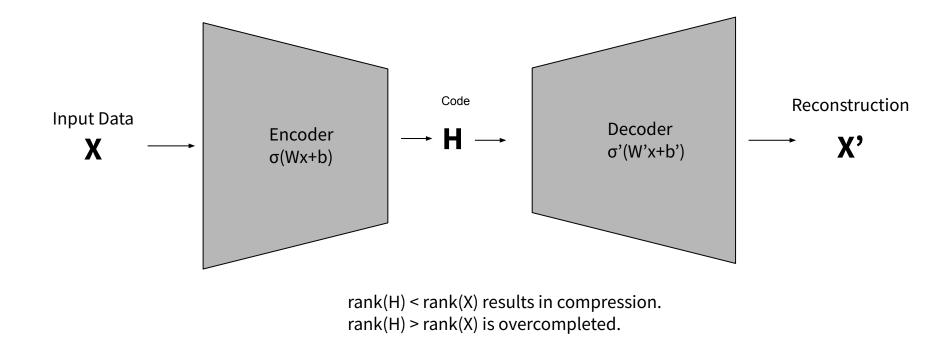
Why non-linear generalization of PCA?

Linear vs nonlinear dimensionality reduction

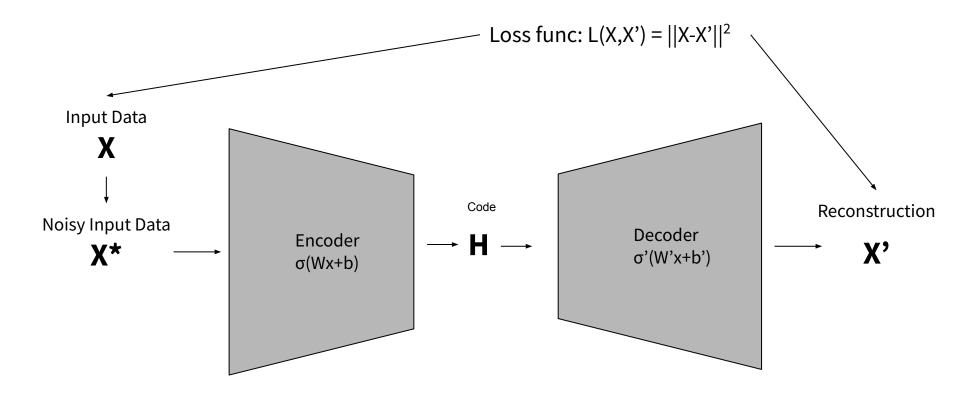


https://www.jeremyjordan.me/autoencoders/

Rank of H



Denoising autoencoder



Shortcomings of Autoencoder

Need for data

Hyperparameters, architectural choices

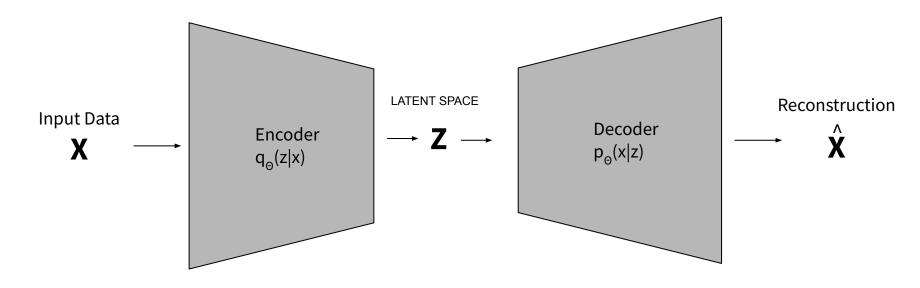
Training vs. test data

Decoding codes are typically not continuous or complete

Learnt attributes are 'static' and may not have relative relevance

Variational autoencoder

Encoding a probability distribution for each latent attribute



Statistical Model

The data x is generated from latent variable z. When we have a large amount of data, then we hope to estimate z in some ways.

Ideally, we would like to compute

p(z|x) = p(x|z)p(z) / p(x)

However, p(x) is intractable since $p(x)=\int p(x|z)p(z)dz$

Variational Inference

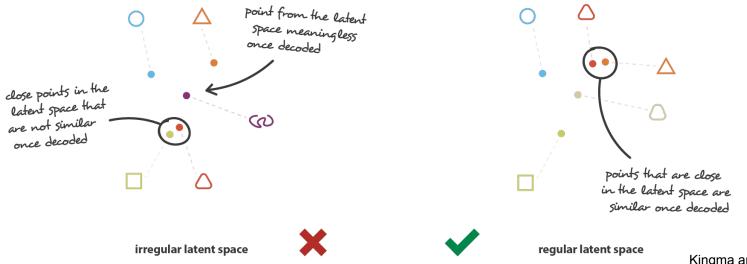
Instead of a intractable distribution p(z|x), we introduce another tractable distribution q(z|x).

We compare p(z|x) and q(z|x) by Kullback–Leibler divergence (also called relative entropy). And if we minimize the KL divergence, we get two distributions to be very similar.

min KL(q(z|x) || p(z|x))

Variational Autoencoder

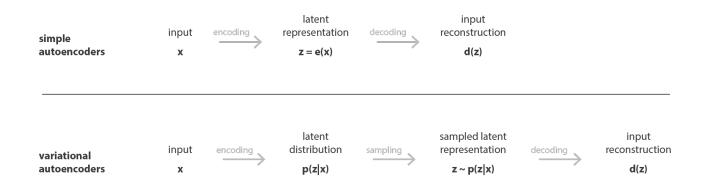
- Generative model: sampling from latent space
- Desired: continuity and completeness
- Regularisation/constraint needed



Kingma and Welling 2014

Variational Autoencoder

- Improvement: learn distributions instead of points
- Latent space obtained by sampling
- Force distribution to be standard normal



VAE Loss Function

Reconstruction error + Kullback-Leibler (KL) divergence

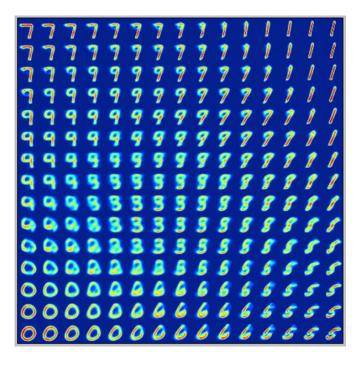
$$\mathcal{L}(x,\hat{x}) + \sum_{j} KL(q_{j}(z|x) || p(z))$$

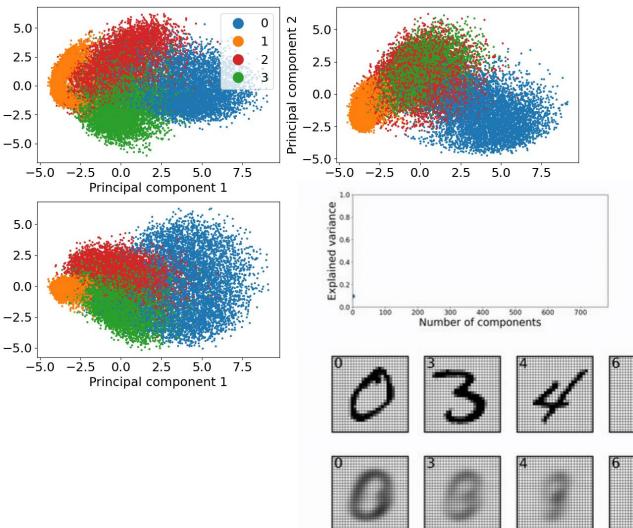
- We are minimizing this loss function, iteratively resulting in
 - Reducing the reconstruction error
 - \circ Encouraging q(z|x) to be similar to the true distribution p(z)

VAE on MNIST

Original

Reconstructed 2 / 0 9 / 4 9





PCA on MNIST

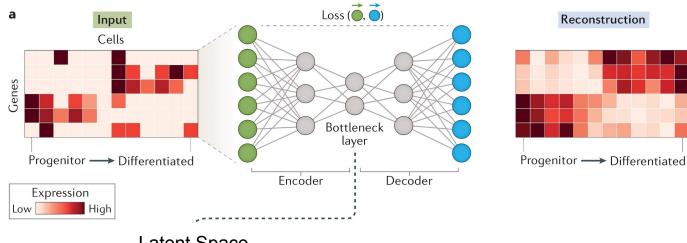
https://gitlab.com/erikfransson/pc a-mnist-testing

Explained variance measures how much of the variation in the data can be explained by the principal components

Original

Reconstructed

On gene expression



Latent Space

Eraslan et al. 2019 NRGL

VAE on CelebA

Large-scale CelebFaces Attributes dataset

Interpretability of unsupervised deep learning

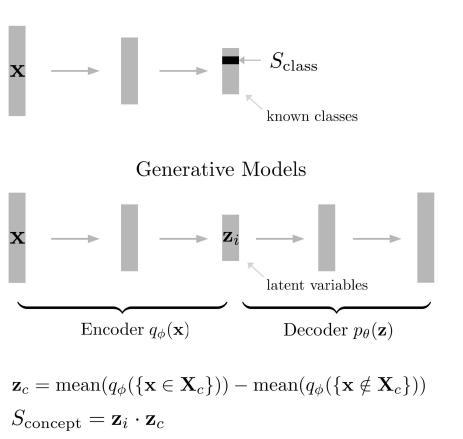
- Concept vectors (Brocki and Chung, 2020)
- Latent space encodes high-level concepts
- Concept vectors obtained via averaging $\mathbf{z}_c = \operatorname{mean}(q_{\phi}(\{\mathbf{x} \in \mathbf{X}_c\})) - \operatorname{mean}(q_{\phi}(\{\mathbf{x} \notin \mathbf{X}_c\}))$
- Manipulation of attributes

$$\mathbf{z}'_i = \mathbf{z}_i + \alpha \mathbf{z}_{\text{smile}}$$

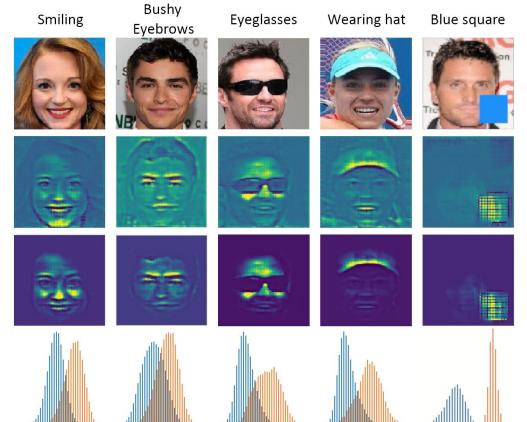
Classification Tasks

Concept Score

- Which input features contributes to the concept vectors?
- Calculate a dot product with the concept vectors.
- We can create <u>saliency maps for</u> <u>unsupervised models</u>
- Concepts from labels (easy supervised cases)
- Unsupervised cases using clustering, correlations, etc

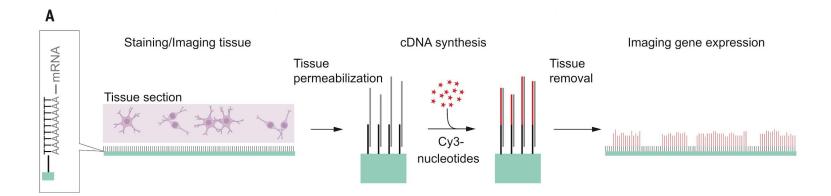


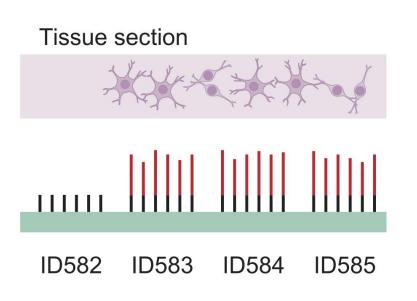
CelebA Concept Saliency Maps

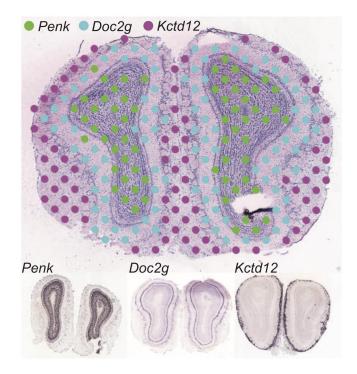


Brocki and Chung 2020

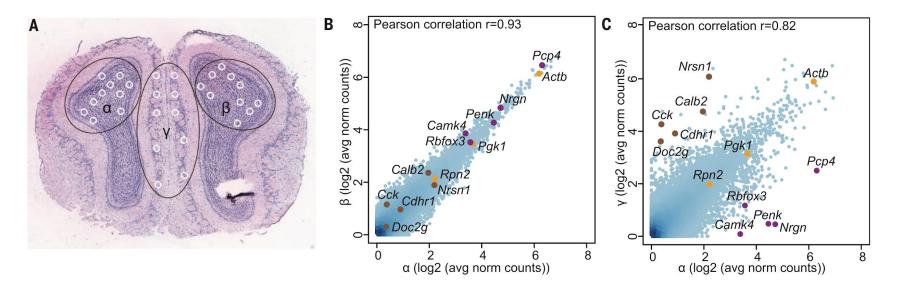
- Tissue transcriptome usually by RNA-sequencing
- Problem: no spatial resolution, important for tissue functionality
- Stahl et al.: positional barcodes before RNA-seq



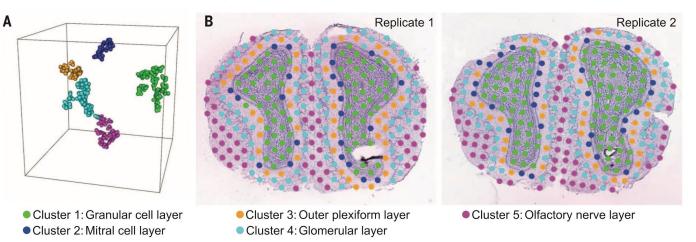




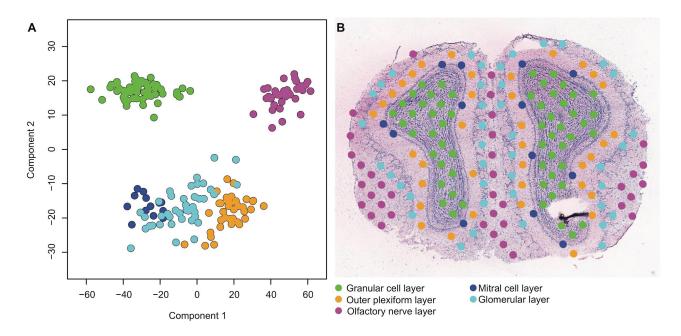
Gene expression in different areas



- Dimension reduction with t-sne or PCA
- Clusters map to morphological layers
- Results for t-sne:



Results for PCA



Stahl et al 2016