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Al on Medical Images?

e Neural networks demonstrated state-of-the-art performances in natural images.
e Early detection and diagnosis of cancer primarily rely on imaging.

e Yet, cancer diagnosis using neural networks has been lagging behind.



Current state of medical imaging analysis

e Medical images have relied on feature engineering.
e Radiomics (radiology + omics): high-throughput extraction of “engineered” (or
“handcrafted”) features from medical images

e Ononehand, there’s a continued development to utilize radiomic features in
downstream ML classifiers, including using neural networks

e Ontheother hand, there’s many approaches to utilize end-to-end neural networks
trained directly on medical images.
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1. Shape features: provide quantitative description of geometric properties of the
ROIs/VOls, such as surface area, total volume, diameter, sphericity or
surface-to-volume ratio.

2. First order statistics (histogram-based features): describe the fractional volume for
the selected region of voxels and the distribution of the voxels’ intensity, for
example minimum, maximum, mean, variance, skewness, or kurtosis.

3. Second order statistics (textural features): These features are extracted based on
matrices derived from intensity relationships of neighboring voxels in a 3D image

4. Higher order statistics features: These features are obtained by statistical methods
after applying filters or mathematical transformations to the image



Standardized Quantitative Radiomics

The Image Biomarker Standardization Initiative: Standardized
Quantitative Radiomics for High-Throughput Image-based Phenotyping
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Figure 4(a). The overall development of consensus on the validity of (tentative) reference values in phases | and Il
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Deep Learning Radiomics?

e We can use a neural network to extract certain ‘higher order’ features.

e Forexample, the shallow layer may extract basic features and the deep layer may
extract high level conceptual features.

e Canthese DL radiomic features be standardized?

e Would the end-to-end DL model perform better?

e How about interpretability?



Segmentation

The purpose of medical image segmentation is to find structures of interest, such as tumors and lesions,
and marking the constituting pixels with the same label. Deep learning techniques have proven to be very
effective in this task and segmentation is in fact the problem which is most commonly tackled using CNNs

The most well-known CNN architecture used for segmentation for medical images is U-net (and its newer

variant nnU-net), which uses upsampling convolutional layers to obtain segmentation maps with the same
resolution as the input. This architecture allows training the model using entire images end-to-end, which

allows the model to utilize the whole context of the image.

Ronneberger et al. 2015 Convolutional Networks for Biomedical Image Segmentation
https:/link.springercom/chapter/10.1007/978-3-319-24574-4_28

Isensee et al. 2021 NnnU-Net: a self-configuring method for deep learning-based biomedical image
segmentation https:./www.nature.com/articles/s41592-020-01008-7



https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
https://www.nature.com/articles/s41592-020-01008-z
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Fig. 3. HeLa cells on glass recorded with DIC (differential interference contrast) mi-
croscopy. (a) raw image. (b) overlay with ground truth segmentation. Different colors
indicate different instances of the HeLa cells. (c) generated segmentation mask (white:

foreground, black: background). (d) map with a pixel-wise loss weight to force the
network to learn the border pixels.

a

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).



Batch effects, everywhere!

Compared to gene expression, medical images are much more variable.

Age, sex, and many other demographic variables

Different hospitals and imaging systems

Acquisition protocols and reconstruction algorithms

Countries and their different approaches (both technical and human factors)
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Fig. 2: Kernel density estimations of graylevel values within
tumor masks for 3 centers. Curves show mediandstandard
deviation. (a) before standardization. (b) after standardization.



Batch effects (also called Harmonization)

Most studies have been carried out using small, retrospective and monocenter cohorts of patients.
The developed models are rarely tested on external datasets, even less often on several ones.

Collecting data from several centers/countries is however complex for legal, ethical, administrative
and technical reasons.

How can we normalize various statistics (e.g., radiomic features) that are confounded by batch
effects? — covariates in regression, location & scale, ComBat?

But perhaps, the better solution would be looking at the source of batch effects
— How can we normalize (harmonize) imaging data across multiple medical centers?



Using DL to remove batch effects?

Let A be a source multicentric domain (a clinical dataset containing heterogeneous images from multiple
centers) and B a target reference domain (healthy subjects from homogeneously-calibrated acquisitions)

Our objective is to learn an implicit mapping ¢ : A> B conditioned on an input image | such that
translated images J =1 ° ¢ shows reduced center effect while preserving the clinical characteristics of A.

We first learn a mapping ¢, : A > B using an unpaired image-to-image translation network (CycleGAN
architecture) between A and B. CycleGAN can learn domain transfer without paired training data due to a
cyclic loss where translated images ¢, (A) are back-translated to their original domain, thereby enforcing
similarity to the original data.

Hognon et al. Standardization of Multicentric Image Datasets with Generative Adversarial Networks IEEE NSS/MIC 2019



CyC LeGAN 21 ctaticov 2007 https.//junyanz.github.io/CycleGAN/

CycleGAN: image-to-image translation model, specifically designed to translate an image from a source domain X to a
target domain Y in the absence of paired examples. The key innovation is a cycle consistency loss to push F(G(X)) = X
(and vice versa).

CycleGAN is an extension of generative adversarial network (GAN), simultaneous training of a generator models
and a discriminator models. In GAN, a generator model creates a synthetic image and a discriminator learns (and
predicts) whether a given image is a real or a synthetic Encoder Generator
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CYC[GGAN Zhu et al. ICCV 2017 https:/junyanz.github.io/CycleGAN/
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The loss function in CycleGAN: adversarial loss (as in GAN), cycle consistency loss (below), and identity loss (for color
composition).

The overall model translate from an original image X (in the source domain) to another imageG(X) (in the target domain),
which is translated back into the source domain F(G(X)). Cycle consistency loss = L distance between X and F(G(X))



Using DL to remove batch effects?

(b)

(d)

Fig. 1: Example standardization results of the BRATS dataset
(a,c) original images (b,d) standardized images.

Hognon et al. Standardization of Multicentric Image Datasets with Generative Adversarial Networks IEEE NSS/MIC 2019



Lung CT (computed tomography) scans
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Lung CT (computed tomography) scans

Find a Nodule slice Extract a Nodule



Classification

We look at classification from having found ROI and cropped the medical image (CT scan) appropriately.
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Making a DL Classifier

Architecture, # layers, activation functions, etc
Training hyperparameters (learning rates, etc)
Evaluation metrics

Incorporating clinical variables (i.e., biomarkers)

Image scale, batch normalization, regularization .
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Finetuning a ResNet-50 model x

ResNet (Residual Networks) designed to improve training deep neural networks F(x)
He et al 2015 https./arxiv.org/abs/1512.03385

identity

"Residual connections”: used in LSTM, transformer (e.g., ChatGPT), AlphaFold X + F(x)

ResNet-50: 50 bottleneck residual blocks, architecture
& pre-trained model In pytorch (torchvision.models.resnet50)

Training strategy: input samples upscaled to 224x224, z-normalization, 50 epochs using the Adam
optimizer, learning rate of 10-3 (reduced by x0.1, at 20 and 40 epochs)

The final accuracy of 0.891



