Latent variable models and dimension reduction
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Data growth, everywhere

Global IP traffic 4%

By 2020, video on the internet will eat %

up a bigger share of increased web traffic. 300 hours uploaded to youtube per minute

15%

5 billion videos watched on youtube every day

700 million photos shared on Snapchat per day

Gaming —— 2 4.7 trillion photos stored
File sharing 8%
Web/data 18%
IP VOD 22%
2016 2021
Total traffic: 96 exabytes 278 exabytes
Source: Cisco B recode

1 exabyte is ~1 billion movies



Exploratory vs. Confirmatory data analysis

Exploratory data analysis (EDA): summarize the data

Always look min/max, median, quantiles, empirical distribution, and so on.
Lean on robust statistics and nonparametric methods
Not necessarily, but could employ statistical models

In contrast to statistical tests, EDA doesn’t rely on a hypothesis.
EDA may help generate hypotheses to test

EDA may help you go beyond CDA

EDA becomes more relevant in high dimensional data



Gregor Mendel’s prmmples of heredity
First statistical/math results in biology (1860s)

Monohybrid Cross
YY
@ 6 Each homozygous
Yellow Green parentin the P
generation produces
¢ ¢ only one kind of
Gametes y g gamete.
E] Yy The heterozygous F;
offspring produces
. two kinds of gamete.
Gametes y y
IE] Y y Self—polli_nation of the
Yellow Yellow El ogsprqng P(?I?chi
» offspring with a 3:
@ W ratio of yellow to green
Yellow Green  seeds.
Y w|@ ‘@
Genotype Phenotype
Phenotypes Genotypes ratio ratio
YY 1 3
Yellow Yy 2
Green yy 1 1

In the P generation, pea plants that are true-breeding for the
dominant yellow phenotype are crossed with plants with the
recessive green phenotype. This cross produces F1
heterozygotes with a yellow phenotype. Punnett square
analysis can be used to predict the genotypes of the F2

generation.

MCB: https://rwu.pressbooks.pub/bio103/chapter/mendelian-genetics/



Gregor Mendel's principles of heredity

Y? 6 The Test Cross
Gametes from parent
of unknown genotype
Y 2
= A test cross can be performed to determine whether an
5 . . . oy
S | (W B4 | A test cross resuting in organism expression a dominant trait is a homozygote or a
'f,=, o all dominant offspring heterozygote.
£2 indicates that the parent
2 . :
% Sy Yy Yy is homozygous dominant.
i
Gametes from parent
of unknown genotype
Y3 ?
=
= ‘é’ y Yy 6 A test cross resulting
2 in a 1:1 ratio of yellow
a2 to green offspring
@2 indicates that the
g § y Yy 6 parent is heterozygous.
0 S

MCB: https://rwu.pressbooks.pub/bio103/chapter/mendelian-genetics/



Three principles of heredity

Law of Dominance
Hybrid offspring will only inherit the dominant trait in the phenotype. The alleles that are suppressed are
called the recessive traits while the alleles that determine the trait are known as the dominant traits.

Law of Segregation

The law of segregation states that during the production of gametes, two copies of each hereditary factor
segregate so that offspring acquire one factor from each parent. In other words, allele (alternative form of
the gene) pairs segregate during the formation of gamete and re-unite randomly during fertilization.

Law of Independent Assortment

A pair of traits segregates independently of another pair during gamete formation. As the individual
heredity factors assort independently, different traits get equal opportunity to occur together.

MCB: https://rwu.pressbooks.pub/bio103/chapter/mendelian-genetics/



J. W. Tukey's Exploratory Data Analysis (1997)

“Far better an approximate answer to the right question, which is often vague, than an
exact answer to the wrong question, which can always be made precise.”

“Numerical quantities focus on expected values, graphical summaries on unexpected
values.”




Previously looked at visualization techniques, from a boxplot to a density plot

Now, we look at how to summarize high-dimensional data in a low-dimensional space

Particularly, focus on what does it mean to reduce the dimensions



Clustering

Much of unsupervised learning are rooted in classic clustering algorithms.
Group similar observations together - identify similarity and dissimilarity in the data
Typically hard clustering, we aim to group n variables (samples) into k clusters

If samples come from naturally occuring latent groups, our goal elevates to identifying
how many clusters exist and which observations belong to which cluster.



K-means Clustering

m variables (e.g., genes as rows in the data matrix) are represented as (xl, Xy ooy X )
Each x.has n observations (e.g., samples as columns)

Euclidean distance: d(x;, x;) = V(3 [x- xj])2

We consider/identify that there are K clusters, C,C,...C,

b, is the mean (centroid) of all x, that belongs that kth cluster



Hartigan-Wong algorithm (1979)

Minimizes the within-cluster sum of squared distances (WCSS)
For a kth cluster C , between x. and the corresponding centroid:

W(C,) =X [d(x;, p, )], where x €C,
Total within-cluster variation is then,

WCSS=3W(C, ), fork=1,...,K



Hartigan-Wong algorithm (1979)

1. Specify the number of clusters (K) to be created (by the analyst)

2. Select randomly k objects from the data set as the initial cluster centers or means

3. Assigns each observation to their closest centroid, based on the Euclidean distance between
the object and the centroid

4. For each of the k clusters, update the cluster centroid by calculating the new mean values of
all the data points in the cluster.

5. Iteratively minimize the total within sum of square. That is, iterate steps 3 and 4 until the
cluster assignments stop changing or the maximum number of iterations is reached.

https://uc-r.github.io/kmeans_clustering



K-means clustering
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K-means Clustering

Small changes to this algorithm yield many other “advanced” clustering algorithms:
K-means clustering, minimizing the 2-norm distance metric

k-medoids clustering, aka PAM (Partitioning Around Medoids)

Mini-batch k-means, a scalable clustering algorithm based on k-means

Many variants of fuzzy (soft) clustering algorithms

k-nearest neighbor classifier is closely related to k-means clustering



Proc. Natl. Acad. Sci. USA
Vol. 95, pp. 14863-14868, December 1998
Genetics

Cluster analysis and display of genome-wide expression patterns

MICHAEL B. EI1SEN*, PAUL T. SPELLMAN*, PATRICK O. BROWNT, AND DAVID BOTSTEIN*

*Department of Genetics and TDepartment of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, 300 Pasteur Avenue,

Stanford, CA 94305

Contributed by David Botstein, October 13, 1998

ABSTRACT A system of cluster analysis for genome-wide
expression data from DNA microarray hybridization is de-
scribed that uses standard statistical algorithms to arrange
genes according to similarity in pattern of gene expression.
The output is displayed graphically, conveying the clustering
and the underlying expression data simultaneously in a form
intuitive for biologists. We have found in the budding yeast
Saccharomyces cerevisiae that clustering gene expression data
groups together efficiently genes of known similar function,
and we find a similar tendency in human data. Thus patterns
seen in genome-wide expression experiments can be inter-
preted as indications of the status of cellular processes. Also,
coexpression of genes of known function with poorly charac-

be used, such as the Euclidean distance, angle, or dot products
of the two n-dimensional vectors representing a series of n
measurements. We have found that the standard correlation
coefficient (i.e., the dot product of two normalized vectors)
conforms well to the intuitive biological notion of what it
means for two genes to be “coexpressed;” this may be because
this statistic captures similarity in ‘“shape” but places no
emphasis on the magnitude of the two series of measurements.

It is not the purpose of this paper to survey the various
methods available to cluster genes on the basis of their
expression patterns, but rather to illustrate how such methods
can be useful to biologists in the analvsis of gene expression
data. We aim to use these mef = coc1s

terized or novel genes may provide a simple means of gaining
leads to the functions of many genes for which information is
not available currently.

tables containing primary d
that can be reduced, in the en
Clustering methods can be

Cluster analysis and display of genome-wide expression patterns
MB Eisen, PT Spellman, PO Brown... - Proceedings of the ..., 1998 - National Acad Sciences

... Therefore, we always combine clustering methods with a ... cluster analysis (5) to gene
expression data collected in our laboratories. This method is a form of hierarchical clustering, ...

¢ Save YY Cite Cited by 20443 Related articles All 80 versions



Bottomly et al. 2011 data on mouse gene exp.

Color Key
Bottomly et al. Raw Data from Evaluating gene expression in C57BL/6J and
DBA/2J mouse striatum using RNA-Seq and microarrays.
Each row’s scaled and centered.
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http://www.ncbi.nlm.nih.gov/pubmed?term=21455293
http://www.ncbi.nlm.nih.gov/pubmed?term=21455293

Bottomly et al. 2011 data on mouse gene exp.

Color Key
Bottomly et al. Clustered Data from Evaluating gene expression in C57BL/6J and

DBA/2J mouse striatum using RNA-Seq and microarrays.

Each row’s scaled and centered.
Columns are clustered revealing systematic patterns

Row Z-Score



http://www.ncbi.nlm.nih.gov/pubmed?term=21455293
http://www.ncbi.nlm.nih.gov/pubmed?term=21455293

Systematic variation

How do we evaluate, extract, and/or model the systematic variation in data?

e Computing variances and means of rows and/or columns
e Group rows and/or columns according to their characteristics (e.g., clustering)

More advanced approaches would consider

e how the data are generated
e how thevariables are related



Dimension reduction and latent variables

e Compress the high-dimensional data using fewer variables while minimizing the
information loss

e Getanew basis (or multivariate variables) that could explain maximal variance
across variables

e Find a low-dimensional space in which the relationships among original variables
are preserved

e |dentify hidden and unobserved (latent) variables that may underly the original
variables



Manifestation of latent variables

Variables (e.g., genes)

Clinical Classification of
Multiple Organ Failure

Genetic Response to
Blunt Force Trauma

}

Manifestation of Post-trauma
Inflammatory Responses

Gene Expression Profiles of
Post-trauma Patients

Samples (e.g., patients)

External
Variables

V4

L(z)

Variables (e.g., genes)

Monotonic Time Points

Yeast Cell Cycle Regulation

!

Manifestation of Periodic Cell
Cycle on Gene Expression

Gene Expression Profiles
of the Cell Cycle Experiment

Samples (e.g., yeast samples)




Types of models

Table 1.1: Classifications of Latent Variable Models

Manifest Observed Variables

Latent Unobserved Variables Continuous Categorical

Continuous Factor analysis Latent trait analysis
Categorical Latent profile analysis Latent class analysis




Manifest Observed Variables
Latent Unobserved Variables Continuous Categorical
Continuous Factor analysis Latent trait analysis
Categorical Latent profile analysis Latent class analysis
EXAMPLES

Abundances of mMRNAs may be considered continuous observed variables
MS/MS data on protein concentrations may be considered continuous
Genotypes (SNPs) are categorical

Batch effects may be categorical latent variables

Population structures may be modeled as continuous or categorical
Etc.



Genomic data

se <-SummarizedExperiment (
assays,
rowData,
colData,
exptData
)

colData (se)

S ' colData (se) $tissue
amples se$tissue

Features (genes)

0
()
=
()
NS
0
()
P
=
-~
()
()
L

Y

rowData (se) assays (se)
rowData (se) $SentrezId assays(se) $count

Huber et al. 2015



General latent variable models

mvariablesy , ¥,y ...,y , measured over n observations

Organize into amatrixY=(y;,¥,eee5y, )

Expected influence of the latent variables on Y by E[Y|z],
Y=E[Y|z] +E

Estimate L(z), that is a row basis for E[Y|z]

This low dimensional matrix L(z) can be thought of as the manifestation of the latent
variables in the observed data.




Graphical representation of LVM

+| E

m variables
|

Yi

n samples

Figure 1.2: Diagram of the latent variable model M The latent variable basis L is
not observable, but may be estimated from Y using the top r right singular vectors
V%;). The noise term E is independent random variation. B is a m X r matrix of
unknown parameters of interest.



Estimating latent variables

Factor analysis (FA), often based on eigendecomposition, was originally developed in
psychology where a number of variables aren’t that high

Leek 2011 “Asymptotic Conditional Singular Value Decomposition for High-Dimensional
Genomic Data” proves that SVD/PCA with a rank r estimates the latent variables in
high-dimensional data where m>>n

Recent approaches using variational autoencoders (VAE) and related ML methods may
be also seen as estimating the latent variables

For more, see Bartholomew's textbook
Latent Variable Models and Factor Analysis: A Unified Approach




Principal Component Analysis

original data set output from PCA
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If we're going to only see the data along one dimension,
though, it might be better to make that dimension the
principal component with most variation. We don't lose
much by dropping since it contributes the least to the
variation in the data set.

PCA is useful for eliminating dimensions. Below, we've
plotted the data along a pair of lines: one composed of the x-
values and another of the y-values.
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https://setosa.io/ev/principal-component-analysis/



Principal Component Analysis

show PCA
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Notations

A A

y is a vector of m random variables

Y, Y, ... Y_arecombined to form a matrix Y
uis a vector of m constants

u,u,...u are combined to form a matrix U

m
T
Xx1=w Y = E Uiy,
=1



Sequential algebraic derivation roteling, 1933

1.

The 1st PC can be found by searching for a weighted sum of m variables with
maximum variance, where a set of m loadings is constrained to be an unit vector

m
T
Xxi1=w Y = E Ui1y;
=1

The maximization of var(x,) leads to u, thatis the loadings for the 1st PCs, x,.
The 2nd PC is then a linear function X, = uT2 Y with maximum variance that is
subject to x™_ x, =0 (orthogonality) and u”, u, = 1 (unit length).

Subsequently, we can derive r < min(m, n) PCs, which are mutually orthogonal.



Minimizing the sum of squared residuals

We can estimate Y by superimposing the top r PCs and the corresponding loadings. This
matrix is often called an eigenmatrix:

?(T) = Z UrX
k=1

Then, the sum of squared residuals (SSR) is,

SSR = Zuyi—?i(r)HQ , where || - || is the L, norm.
i=1

When estimating Y with any set of r arbitrary vectors, using the top r PCs always leads to
the minimal SSR.




Singular value decomposition

PCA is the most efficiently computed by SVD in practice:

— T

(mxn) (mxn) = (nxn) = (nxn)

U is a mxn orthonormal matrix, the left singular vectors
D is a nxn diagonal matrix, where the diagonal elements are the singular values
Vis a nxn orthonormal matrix, the right singular vectors

PCs are the rows of DV, where the it" PC is found in the it row of DV .
The right singular vectors of Y are equivalent to the eigenvectors of m™Y'Y.



Asymptotic Conditional SVD

Leek 2010 Asymptotic Conditional Singular Value Decomposition for High-Dimensional Genomic Data.
Biometrics proves thatin large-scale genomic data, SVD (therefore PCA) can accurately capture the
latent variables.

As m > oo, the top r right singular vectors of Y converge with probability 1 to a matrix
whose row space is equivalent to that of L (Leek, 2010)



Singular value decomposition
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In our setup, this is equivalent
to principal components
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Wall et al. 2003



Using eigenmatrices for imputation

Missing data imputation (SVDimpute from Troyanskaya et al. 2001 Bioinformatics)

Consider data Y with m rows and n columns

For missing values, use the row means as the first approximations
Compute SVD

Take the eigenmatrix of k rank

Impute missing values with corresponding values from this eigenmatrix

A A



SVD/PCA for netflix recommendation

1 Million $ Prize.

We have a very large data of reviews (5 stars)
How do we recommend the best movies to users.
Aka, how do we predict what a user’s rating

For any (unseen/unrated) movie



Independent Component Analysis

Closely related to PCA
Originated in signal processing for “cocktail party problem”
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Recovering “mixed"” signals

Observations (mixed signal)
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http://www.youtube.com/watch?v=cVMMXOg_SiY

Alter, Brown, and Botstein (2000) Singular value decomposition for
genome-wide expression data processing and modeling. PNAS

Spellman et al. (3) monitored genome-wide mRNA levels, for 6,108 ORFs of the budding
yeast Saccharomyces cerevisiae simultaneously, over approximately one cell cycle
period, T =390 min, in a yeast culture synchronized by elutriation, relative to a
reference mRNA from an asynchronous yeast culture, at 30-min intervals.

> How do we capture the cell cycle regulation?



See the original data in Spellman et al. (1998) MBoC
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data

IN gene expression

SVD/PCA

(b) Eigenexpression Fraction
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Eigenarrays

(c) Expression Level

(b) Eigenarrays

(a) Arrays
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Novembre et al. (2008) Genes mirror geography within Europe. Nature

[...] we characterize genetic variation in a sample of 3,000 European individuals
genotyped at over half a million variable DNA sites in the human genome. Despite low
average levels of genetic differentiation among Europeans, we find a close
correspondence between genetic and geographic distances; indeed, a geographical
map of Europe arises naturally as an efficient two-dimensional summary of genetic
variation in Europeans.
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A statistical summary of genetic data from 1,387 Europeans based on principal component axis one (PC1) and axis two (PC2). Small coloured labels
represent individuals and large coloured points represent median PC1 and PC2 values for each country. The inset map provides a key to the labels. The PC
axes are rotated to emphasize the similarity to the geographic map of Europe.



Accounting for population structure

Importantly, “population structure” is needed in assessing association between
genetics and diseases. Without this type of methods, we may not be able to distinguish
or identify genes (or loci) that are contributing to susceptibility to a disease

1. Model the SNP data using latent variable models
2. Estimate population structure by PCA, LMM, LFA, or related methods
3. Include the top r latent variables in an association test - GWAS: disease ~ gene

Price et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies

Kang et al. (2010) Variance component model to account for sample structure in genome-wide association
studies

Song et al. (2015) Testing for genetic associations in arbitrarily structured populations



m(2) [ SNP z, }

m2(2)
SNP z, ]
Structure, - i Ale)
Lifestyle “non-genetic z [ . ]
’ Trait
Environment Y
z

[ SNP z,. J

A graphical model describing population structure and its effects on a trait of interest. Population structure is captured by a common latent
variable z among a set of loci x, (i =1,2, ..., m), via the allele frequencies m(z). When one locus has a causal effect on the trait, this induces

spurious associations with other loci affected by population structure. At the same time, population structure may be correlated with lifestyle
and environment as these are all possibly related to ancestry and geography.



LVM for population structure

There are n individuals, each with m measured SNP genotypes.

The genotype for SNP j in individual j is denoted by X; € {0,1,2},i=1,2,...,m,j=1,2, ..., n. We collected these SNP genotypes into
an m x n matrix X, where the (i, j) entry is X We denote the genotypes for individual j by x' = (x, , x xmj)T.

1]" 2j’ ey
Introduce Z as an unobserved variable capturing an individual’s structure
For SNP J, the allele frequency can be viewed as a function of Z, i.e. m(2).

For a sampled individual j from an overall population, we have ‘individual-specific allele frequencies’ defined as m, = n,.(zj) at SNP /.

Each value of m, informs us as to the expectation of that particular SNP/individual pair under the scenario we observed a new individual
at that locus with the same structure, specifically as E[x,.j]/2 =1

If an observed SNP genotype X; is treated as a random variable, then we assume that M, serves to model X;asa Binomial parameter:
xl.j|Z =z~ Binomial(2, rrl.(zj)).
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