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Explosive growth of genomic data

Stephens et al. (2015) PLoS Biology



Data growth, everywhere

1 exabyte is ~1 billion movies

300 hours uploaded to youtube per minute

5 billion videos watched on youtube every day

700 million photos shared on Snapchat per day

4.7 trillion photos stored



Exploratory vs. Confirmatory data analysis
Exploratory data analysis (EDA): summarize the data

Always look min/max, median, quantiles, empirical distribution, and so on.
Lean on robust statistics and nonparametric methods
Not necessarily, but could employ statistical models

In contrast to statistical tests, EDA doesnʼt rely on a hypothesis. 
EDA may help generate hypotheses to test
EDA may help you go beyond CDA
EDA becomes more relevant in high dimensional data



Gregor Mendel’s principles of heredity
First statistical/math results in biology (1860s)

MCB: https://rwu.pressbooks.pub/bio103/chapter/mendelian-genetics/

In the P generation, pea plants that are true-breeding for the 
dominant yellow phenotype are crossed with plants with the 
recessive green phenotype. This cross produces F1 
heterozygotes with a yellow phenotype. Punnett square 
analysis can be used to predict the genotypes of the F2 
generation.



Gregor Mendel’s principles of heredity

MCB: https://rwu.pressbooks.pub/bio103/chapter/mendelian-genetics/

A test cross can be performed to determine whether an 
organism expression a dominant trait is a homozygote or a 
heterozygote.



Three principles of heredity

MCB: https://rwu.pressbooks.pub/bio103/chapter/mendelian-genetics/

Law of Dominance
Hybrid offspring will only inherit the dominant trait in the phenotype. The alleles that are suppressed are 
called the recessive traits while the alleles that determine the trait are known as the dominant traits.

Law of Segregation
The law of segregation states that during the production of gametes, two copies of each hereditary factor 
segregate so that offspring acquire one factor from each parent. In other words, allele (alternative form of 
the gene) pairs segregate during the formation of gamete and re-unite randomly during fertilization.

Law of Independent Assortment
A pair of traits segregates independently of another pair during gamete formation. As the individual 
heredity factors assort independently, different traits get equal opportunity to occur together.



J. W. Tukey’s Exploratory Data Analysis (1997)
“Far better an approximate answer to the right question, which is often vague, than an 
exact answer to the wrong question, which can always be made precise.”

“Numerical quantities focus on expected values, graphical summaries on unexpected 
values.”



Previously looked at visualization techniques, from a boxplot to a density plot

Now, we look at how to summarize high-dimensional data in a low-dimensional space

Particularly, focus on what does it mean to reduce the dimensions

Raw Data Preprocessed

Visualisation

Dimension reduction

Clustering

Summary statistics

Latent variable models

…….



Clustering
Much of unsupervised learning are rooted in classic clustering algorithms.

Group similar observations together – identify similarity and dissimilarity in the data

Typically hard clustering, we aim to group n variables (samples) into k clusters

If samples come from naturally occuring latent groups, our goal elevates to identifying 
how many clusters exist and which observations belong to which cluster.



K-means Clustering
m variables (e.g., genes as rows in the data matrix) are represented as (x1, x2, ..., xm)

Each xi has n observations (e.g., samples as columns)

Euclidean distance: d(xi, xj) = √ (⅀[xi- xj])2

We consider/identify that there are K clusters, C1, C2, …, CK

μk is the mean (centroid) of all xi that belongs that kth cluster



Hartigan-Wong algorithm (1979) 
Minimizes the within-cluster sum of squared distances (WCSS)

For a kth cluster Ck, between xi and the corresponding centroid:

W(Ck) = ⅀[d(xi, μk)], where xi∈Ck

Total within-cluster variation is then, 

WCSS = ⅀W(Ck), for k = 1, … , K



Hartigan-Wong algorithm (1979) 
1. Specify the number of clusters (K) to be created (by the analyst)
2. Select randomly k objects from the data set as the initial cluster centers or means
3. Assigns each observation to their closest centroid, based on the Euclidean distance between 

the object and the centroid
4. For each of the k clusters, update the cluster centroid by calculating the new mean values of 

all the data points in the cluster. 
5. Iteratively minimize the total within sum of square. That is, iterate steps 3 and 4 until the 

cluster assignments stop changing or the maximum number of iterations is reached. 

https://uc-r.github.io/kmeans_clustering



K-means clustering



K-means Clustering
Small changes to this algorithm yield many other “advanced” clustering algorithms:

K-means clustering, minimizing the 2-norm distance metric

k-medoids clustering, aka PAM (Partitioning Around Medoids)

Mini-batch k-means, a scalable clustering algorithm based on k-means

Many variants of fuzzy (soft) clustering algorithms

k-nearest neighbor classifier is closely related to k-means clustering





Bottomly et al. 2011 data on mouse gene exp.
Data from Evaluating gene expression in C57BL/6J and 
DBA/2J mouse striatum using RNA-Seq and microarrays.

Each rowʼs scaled and centered.

http://www.ncbi.nlm.nih.gov/pubmed?term=21455293
http://www.ncbi.nlm.nih.gov/pubmed?term=21455293


Bottomly et al. 2011 data on mouse gene exp.
Data from Evaluating gene expression in C57BL/6J and 
DBA/2J mouse striatum using RNA-Seq and microarrays.

Each rowʼs scaled and centered.
Columns are clustered revealing systematic patterns

http://www.ncbi.nlm.nih.gov/pubmed?term=21455293
http://www.ncbi.nlm.nih.gov/pubmed?term=21455293


Systematic variation
How do we evaluate, extract, and/or model the systematic variation in data?

● Computing variances and means of rows and/or columns
● Group rows and/or columns according to their characteristics (e.g., clustering)

More advanced approaches would consider

● how the data are generated 
● how the variables are related 



Dimension reduction and latent variables
● Compress the high-dimensional data using fewer variables while minimizing the 

information loss
● Get a new basis (or multivariate variables) that could explain maximal variance 

across variables
● Find a low-dimensional space in which the relationships among original variables 

are preserved
● Identify hidden and unobserved (latent) variables that may underly the original 

variables 



Manifestation of latent variables



Types of models



EXAMPLES

● Abundances of mRNAs may be considered continuous observed variables
● MS/MS data on protein concentrations may be considered continuous 
● Genotypes (SNPs)  are categorical
● Batch effects may be categorical latent variables 
● Population structures may be modeled as continuous or categorical
● Etc.



Huber et al. 2015

Genomic data 

Y



General latent variable models
m variables y1, y2, . . . , ym, measured over n observations

Organize into a matrix Y = (y1, y2, . . . , ym)T

Expected influence of the latent variables on Y by E[Y|z],

 Y = E[Y|z] + E

Estimate L(z), that is a row basis for E[Y|z]

This low dimensional matrix L(z) can be thought of as the manifestation of the latent 
variables in the observed data.



Graphical representation of LVM



Estimating latent variables
Factor analysis (FA), often based on eigendecomposition, was originally developed in 
psychology where a number of variables arenʼt that high

Leek 2011 “Asymptotic Conditional Singular Value Decomposition for High-Dimensional 
Genomic Data” proves that SVD/PCA with a rank r estimates the latent variables in 
high-dimensional data where m >> n

Recent approaches using variational autoencoders (VAE) and related ML methods may 
be also seen as estimating the latent variables

For more, see Bartholomew's textbook
Latent Variable Models and Factor Analysis: A Unified Approach



Principal Component Analysis

https://setosa.io/ev/principal-component-analysis/

← New basis 1



Principal Component Analysis

https://setosa.io/ev/principal-component-analysis/



Notations
1. y is a vector of m random variables
2. y1, y2, … yn are combined to form a matrix Y
3. u is a vector of m constants
4. u1, u2, … ur are combined to form a matrix U
5.



Sequential algebraic derivation Hotelling, 1933

1. The 1st PC can be found by searching for a weighted sum of m variables with 
maximum variance, where a set of m loadings is constrained to be an unit vector 

2. The maximization of var(x1) leads to u1 that is the loadings for the 1st PCs, x1.
3. The 2nd PC is then a linear function x2 = uT

2 Y with maximum variance that is 
subject to xT

1 x2 = 0 (orthogonality) and uT
2 u2 = 1 (unit length).

4. Subsequently, we can derive r < min(m, n) PCs, which are mutually orthogonal.



Minimizing the sum of squared residuals 
We can estimate Y by superimposing the top r PCs and the corresponding loadings. This 
matrix is often called an eigenmatrix:

Then, the sum of squared residuals (SSR) is, 

When estimating Y with any set of r arbitrary vectors, using the top r PCs always leads to 
the minimal SSR.

, where || · || is the L1 norm.



Singular value decomposition

PCA is the most efficiently computed by SVD in practice:

Y(m×n) = U(m×n)S(n×n)V
T

(n×n) 

U is a m×n orthonormal matrix, the left singular vectors
D is a n×n diagonal matrix, where the diagonal elements are the singular values
V is a n×n orthonormal matrix, the right singular vectors

PCs are the rows of DVT , where the ith PC is found in the ith row of DVT .
The right singular vectors of Y are equivalent to the eigenvectors of m−1YTY.



Asymptotic Conditional SVD
Leek 2010 Asymptotic Conditional Singular Value Decomposition for High-Dimensional Genomic Data. 
Biometrics proves that in large-scale genomic data, SVD (therefore PCA) can accurately capture the 
latent variables.

As m → ∞, the top r right singular vectors of Y converge with probability 1 to a matrix
whose row space is equivalent to that of L (Leek, 2010)



Singular value decomposition

Wall et al. 2003

In our setup, this is equivalent 
to principal components

Y



Using eigenmatrices for imputation
Missing data imputation (SVDimpute from Troyanskaya et al. 2001 Bioinformatics)

1. Consider data Y with m rows and n columns
2. For missing values, use the row means as the first approximations
3. Compute SVD 
4. Take the eigenmatrix of k rank
5. Impute missing values with corresponding values from this eigenmatrix

 



SVD/PCA for netflix recommendation
1 Million $ Prize.

We have a very large data of reviews (5 stars)

How do we recommend the best movies to users.

Aka, how do we predict what a userʼs rating

For any (unseen/unrated) movie



Independent Component Analysis
Closely related to PCA
Originated in signal processing for “cocktail party problem”



Recovering “mixed” signals



http://www.youtube.com/watch?v=cVMMXOg_SiY


Alter, Brown, and Botstein (2000) Singular value decomposition for 
genome-wide expression data processing and modeling. PNAS

Spellman et al. (3) monitored genome-wide mRNA levels, for 6,108 ORFs of the budding 
yeast Saccharomyces cerevisiae simultaneously, over approximately one cell cycle 
period, T ≈ 390 min, in a yeast culture synchronized by elutriation, relative to a 
reference mRNA from an asynchronous yeast culture, at 30-min intervals.

→  How do we capture the cell cycle regulation? 



See the original data in Spellman et al. (1998) MBoC

(A) Gene expression patterns for cell cycle–regulated genes. The 800 genes 
are ordered by the times at which they reach peak expression.

(B) Genes that share similar expression profiles are 
grouped by a (hierarchical) clustering algorithm



SVD/PCA in gene expression data

Alter et al 2000



Eigenarrays

Alter et al 2000



Novembre et al. (2008) Genes mirror geography within Europe. Nature 

[...] we characterize genetic variation in a sample of 3,000 European individuals 
genotyped at over half a million variable DNA sites in the human genome. Despite low 
average levels of genetic differentiation among Europeans, we find a close 
correspondence between genetic and geographic distances; indeed, a geographical 
map of Europe arises naturally as an efficient two-dimensional summary of genetic 
variation in Europeans.



A statistical summary of genetic data from 1,387 Europeans based on principal component axis one (PC1) and axis two (PC2). Small coloured labels 
represent individuals and large coloured points represent median PC1 and PC2 values for each country. The inset map provides a key to the labels. The PC 
axes are rotated to emphasize the similarity to the geographic map of Europe.



Accounting for population structure
Importantly, “population structure” is needed in assessing association between 
genetics and diseases. Without this type of methods, we may not be able to distinguish 
or identify genes (or loci) that are contributing to susceptibility to a disease 

1. Model the SNP data using latent variable models 
2. Estimate population structure by PCA, LMM, LFA, or related methods
3. Include the top r latent variables in an association test - GWAS: disease ~ gene

Price et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies

Kang et al. (2010) Variance component model to account for sample structure in genome-wide association 
studies

Song et al. (2015) Testing for genetic associations in arbitrarily structured populations



A graphical model describing population structure and its effects on a trait of interest. Population structure is captured by a common latent 
variable z among a set of loci xi (i =1,2, …, m), via the allele frequencies πi(z). When one locus has a causal effect on the trait, this induces 
spurious associations with other loci affected by population structure. At the same time, population structure may be correlated with lifestyle 
and environment as these are all possibly related to ancestry and geography. 



LVM for population structure
There are n individuals, each with m measured SNP genotypes.

The genotype for SNP i in individual j is denoted by xij ∈ {0,1,2}, i = 1,2, …, m, j = 1,2, …, n. We collected these SNP genotypes into 
an m × n matrix X, where the (i, j) entry is xij. We denote the genotypes for individual j by xj = (x1j, x2j, …, xmj)

T.

Introduce Z as an unobserved variable capturing an individual’s structure

For SNP i, the allele frequency can be viewed as a function of Z, i.e. πi(Z). 

For a sampled individual j from an overall population, we have ‘individual-specific allele frequencies’ defined as πij ≡ πi(zj) at SNP i. 

Each value of πij informs us as to the expectation of that particular SNP/individual pair under the scenario we observed a new individual 
at that locus with the same structure, specifically as E[xij]/2 = πij.

If an observed SNP genotype xij is treated as a random variable, then we assume that πij serves to model xij as a Binomial parameter: 
xij|Z = zj ∼ Binomial(2, πi(zj)). 



Principal component and logistic factor biplots for the Human Genome Diversity Project dataset. 

Logistic Factor Analysis (LFA), 
Extending PCA for binomial data


