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Project, report, and presentation
Study a specific molecular system and a biological/medical question

Be inspired by biological functions, diseases, modeling approaches

Use the modern research practices (GitHub, reproducible codes, etc)

Have a specific hypothesis or an exploratory goal

Replicate an interesting research 

Experiment with how an analysis is done

Improve methods and algorithms



Biological signals 
We have focused on modeling and estimating biological effects, such as

● Cell cycle in yeast gene expression data
● Genetic strains and their impacts on mouse RNA-seq data
● Population structure estimated from SNP data 

In the last week, looking at the Bottomly et al. (2011) data using 2 distinct mouse 
genetic strains, we noticed that “experiment numbers” can segregate the scatter plot of 
PC1 vs. PC2. 



Scatter plot of PC1 vs. PC2 in Bottomly et al.

PC1 and PC2 explain more than 90% of variance in the data!



Batch effects 
Unwanted variation due to suboptimal study designs and technical factors (e.g., 
experiment numbers and sequencing lanes in Bottomly data) cause BATCH EFFECTS

Sometimes it is inevitable that some batch effects exist even with the best efforts in 
balanced and randomized design.

Letʼs look at how batch effects have reduced the impacts and biological implications of 
major studies

 



Sources of batch effects 

Genetics/epigenetics      Environments/Experimental Technical



Case Study 1 
Comparison of the transcriptional landscapes between human and mouse 
tissues

Mouse ENCODE (Encyclopedia of DNA Elements), Lin et al. (2014) Proceedings 
of the National Academy of Sciences of the United States of America (IF=11)

Image from https://www.encodeproject.org



Mouse ENCODE 
To study gene expression levels, 
the Consortium collected RNA 
sequencing data from multiple 
tissues from human and mouse.

13 human tissues, ENCODE
11 human tissues, REMC
13 mouse tissues, mouse ENCODE
Human BodyMap 2.0 (HBM)

In total, “93 datasets encompassing 
the most tissue-diverse RNA-seq 
dataset to date”

Additional 294 RNA-seq datasets 
from the Genotype-Tissue 
Expression (GTEx) project



[We] performed a comparison of the expression profiles of 15 tissues by deep RNA 
sequencing and examined the similarities and differences in the transcriptome for 
both protein-coding and -noncoding transcripts. Although commonalities are 
evident in the expression of tissue-specific genes between the two species, the 
expression for many sets of genes was found to be more similar in different 
tissues within the same species than between species. These findings were 
further corroborated by associated epigenetic histone mark analyses. We also find 
that many noncoding transcripts are expressed at a low level and are not 
detectable at appreciable levels across individuals. Moreover, the majority lack 
obvious sequence homologs between species, even when we restrict our 
attention to those which are most highly reproducible across biological 
replicates. Overall, our results indicate that there is considerable RNA expression 
diversity between humans and mice, well beyond what was described previously, 
likely reflecting the fundamental physiological differences between these two 
organisms.

Mouse ENCODE abstract



Loading plots from PCA on human and mouse gene expression data. (A) PCA is performed on the 
combined Stanford (human, mouse), Salk (human),HBM (human), LICR (mouse), and CSHL (mouse) 
expression datasets using 15 tissue type



Clustering by species vs by tissue
This research, supported by an international team and numerous fundings, caused a big 
controversial in the community.

WHY? 



Clustering by species vs by tissue
This research, supported by an international team and numerous fundings, caused a big 
controversial in the community.

WHY? 

Homology: the central concept for all of biology (Wake, 1994 in Science) 

Generally, modern biology is built upon the empirical observation that homologous 
gene regulatory networks establish the identities of homologous cell-types, 
tissues, and organs across species

Manfred D. Laubichler (2000) Homology in Development and the Development of the Homology Concept. 
https://academic.oup.com/icb/article/40/5/777/157228



Gilad and Mizrahi-Man (2015) F1000Research
Recently, the Mouse ENCODE Consortium reported that comparative gene expression 
data from human and mouse tend to cluster more by species rather than by tissue. This 
observation was surprising, as it contradicted much of the comparative gene regulatory 
data collected previously, as well as the common notion that major developmental 
pathways are highly conserved across a wide range of species, in particular across 
mammals.

Here we show that the Mouse ENCODE gene expression data were collected using a 
flawed study design, which confounded sequencing batch [...] with species.

When we account for the batch effect, the corrected comparative gene expression data 
from human and mouse tend to cluster by tissue, not by species.



Reconstructed study design

 Sequencing batches as inferred based on the sequence identifiers of the RNA-Seq reads.



Without accounting for batch effects



Gilad and Mizrahi-Man method
1. Remove the 30% of genes with the lowest expression
2. Remove reads that map to the 12 mitochondrial genes
3. Remove the GC bias (human vs. mouse), by within-column normalization
4. Normalize for the library sizes for the samples using the trimmed mean of M-values
5. Log2-transformation
6. Account for the study design by fitting ‘ComBat’ with batches, species and tissue.

Codes and commands are all available: http://dx.doi.org/10.5281/zenodo.17606



With accounting for batch effects



Discussion on this study designs 
See post-publication reviews on https://f1000research.com/articles/4-121

Lin: Provide feedbacks & additional experiments in support of the original claims

Salzberg: Because this batch effect is almost completely confounded with the main 
effect reported (the clustering by species), it's nearly impossible to separate the two.

Gilad: Our principal claim is NOT that the data cluster by tissue rather than by species. 
Rather, our claim is that your study design does not allow you to address the question of 
whether the data cluster better by tissue or species.

https://f1000research.com/articles/4-121


Codes and commands are all available

http://dx.doi.org/10.5281/zenodo.17606



Case Study 2
Gene expression in the urinary bladder: a common carcinoma in situ (CIS) 
gene expression signature exists disregarding histopathological classification. 

Dyrskjot, L. et al. (2004) Cancer Research 

The second-most frequently cited cancer journal in the world, with an impact factor of > 11

Stained tissue sections showing typical histological 
appearance of the different groups of samples used.
A, superficial Ta tumor from a bladder with no CIS
B, superficial Ta tumor from a bladder with surrounding CIS
C, muscle invasive T2+ tumor 
D, biopsy with CIS lesion from a bladder removed by 
cystectomy 
E, biopsy with normal appearing urothelial cells from a bladder 
with CIS lesions removed by cystectomy 
F, biopsy from a normal bladder showing normal urothelium, 
no bladder cancer history.



Motivation: The presence of carcinoma in situ (CIS) lesions in the urinary bladder is 
associated with a high risk of disease progression to a muscle invasive stage. Non-invasive 
urinalysis assessment strategies would benefit patients.

Experiments: Gene expression microarray 
analysis to exfoliated urothelia recovered 
from bladder washes obtained from 46 
patients with subsequently confirmed 
presence or absence of bladder cancer.

Urothelia: a specialized type of tissue inside of an urinary tract



Dyrskjot, L. et al. (2004) Cancer Res
Analysis: Data from microarrays containing 56,000 targets was subjected to a panel of 
statistical analyses to identify bladder cancer-associated gene signatures. Hierarchical 
clustering and supervised learning algorithms were used to classify samples on the 
basis of tumor burden.

Results: A differentially expressed geneset of 319 gene probes was associated with the 
presence of bladder cancer (P<0.01), and visualization of protein interaction networks 
revealed VEGF and AGT as pivotal factors in tumor cells. Supervised machine learning 
and a cross-validation approach were used to build a 14-gene molecular classifier 
that was able to classify patients with and without bladder cancer with an overall 
accuracy of 76%.



Hierarchical cluster analysis of the gene 
expression in 41 transitional cell carcinoma 
(TCC), 9 normal samples, and 10 samples 
from cystectomy specimens with carcinoma 
in situ (CIS) lesions.



normal bladder

CIS lesions 
detected

normal samples 
adjacent to CIS 
lesions

the 50 best 
up-regulated marker 
genes in sTCC 
without CIS are 
shown at top

(surgical removal of the urinary bladder)

the 50 best 
up-regulated marker 
genes in transitional 
cell carcinoma with 
CIS



Construction of a Molecular CIS Classifier

Our first approach was to try to classify sTCC with or without CIS in the surrounding mucosa, based 
on tissue from the sTCC. The best classifier performance (one error) was obtained in 
cross-validation loops using 25 genes 

16 of these were included in 70% of the cross-validation loops, and these were selected to 
represent our final classifier for CIS diagnosis. Permutation analysis showed that 13 of these were 
significant at a 1% confidence level; the remaining 3 genes were above a 10% confidence level.



Batch effects in Dyrskjot, L. et al. (2004) 
Leek et al. 2010 Tackling the widespread and critical impact of batch effects in high-throughput data
 Normalized  with RMARaw

 Clustering of samples after normalizationAfter normalization

The raw data for only the normal 
samples. Here, green and orange 
represent two different processing 
dates. a | Box plot of raw gene 
expression data (log base 2). b | Box 
plot of data processed with RMA, a 
widely used preprocessing algorithm 
for Affymetrix data. RMA applies 
quantile normalization — a technique 
that forces the distribution of the raw 
signal intensities from the microarray 
data to be the same in all samples. c | 
Example of ten genes that are 
susceptible to batch effects even after 
normalization. d | Clustering of 
samples after normalization. Note 
that the samples perfectly cluster by 
processing date.



Leek et al. 2010 Tackling the widespread and critical impact of batch effects in high-throughput data
 

The first three rows represent 
studies for which batch effects 
have been described in the 
literature.

Rows four and five are from 
genome-wide association 
study data sets.

Rows six to eight represent 
data from The Cancer Genome 
Atlas (TCGA).

Finally, the last row represents 
second-generation sequencing 
data from the 1000 Genomes 
Project.



How to account for batch effects?
Exploration

Visualize

Modeling

Estimation

Overall, there are MANY methods. We look at 2 most popular methods.



Leek et al. 2010



Leek et al. 2010



Linear model
Conventionally, a linear model is used for relating a biological variable and an observed 
genomic data:

Y = BX + E
Y = Observed genomic data, containing m variables (rows) and n observations (cols)

X = Biological variables

E = Independently and identically distributed (i.i.d.) noise



Linear model, with dependent noise

Y = BX + E
When we fail to model batch effects in this linear model, there is a dependence across 
the noise term E (e.g., no longer i.i.d.) 

If we know the technical variable, we may include them as covariates in a linear model.



Linear model, with technical variables

Y = BX + E

= BX + ΓG + U
X = Biological variables 

G = Technical  variables 

U =  i.i.d. Noise 



Boxplots of data, within each batch
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Processing Batch
Before L/S adjustments After L/S adjustments

Čuklina et al (2019)



Location and scale (L/S) adjustments

A wide family of adjustments in which one assumes a model for the location (mean) and/or 
scale (variance) of the data within batches and then adjusts the batches to meet assumed model 
specifications. 

Therefore, the batch effects can be modeled out by standardizing means and variances across 
batches

The simplest approach for L/S batch adjustment is to mean center and standardize the variance 
of each batch for each gene independently. 

In more complex situations such as unbalanced designs or when incorporating numerical 
covariates, use a general L/S framework:

Johnson et al (2007) 



General L/S framework 

Yijg : observed data -- the expression value for gene g for sample j from batch i

          Contain m batches containing ni samples within batch i for i=1,…,m , for gene and g=1,…,G 
X : biological variables -- a design matrix for sample conditions

βg : regression coefficients corresponding to X

γig : additive batch effects of batch i for gene g

δig  : multiplicative batch effects of batch i for gene g

ε : noise with mean zero and variance σ2
g

Johnson et al (2007) 



Empirical Bayes approach with ComBat

The most important disadvantage of many existing methods is that large batch sizes are required 
for implementation because such methods are not robust to outliers.

ComBat make this possible even for a smaller sample size by:

1. Estimating the L/S model parameters that represent the batch effects by “pooling 
information” across genes in each batch

2. Shrinking the batch effect parameter estimates toward the overall mean of the batch effect 
estimates (across genes)

Johnson et al (2007) 



ComBat algorithm

1. Standardize the data
Standardize gene-wise so that genes have similar overall mean and variance
Standardized data, Zijg , satisfy the distributional form, Zijg ∼ N(γig,δ2

ig)
 

2. Batch effect parameter estimates using parametric empirical priors
Johnson et al (2007) uses the following priors
Those hyperparameters are estimated from the standardized data, Zijg 
Then, the posteriors are 

3. Adjust the data for batch effects with

Johnson et al (2007) 





Shrinkage


