Batch effects, technical variables,
and unwanted variation
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Project, report, and presentation

Study a specific molecular system and a biological/medical question
Be inspired by biological functions, diseases, modeling approaches

Use the modern research practices (GitHub, reproducible codes, etc)

Have a specific hypothesis or an exploratory goal
Replicate an interesting research
Experiment with how an analysis is done

Improve methods and algorithms



Biological signhals

We have focused on modeling and estimating biological effects, such as

e Cellcycle in yeast gene expression data
e Genetic strains and their impacts on mouse RNA-seq data
e Population structure estimated from SNP data

In the last week, looking at the Bottomly et al. (2011) data using 2 distinct mouse
genetic strains, we noticed that “experiment numbers” can segregate the scatter plot of
PC1vs. PC2.



Scatter plot of PC1 vs. PC2 in Bottomly et al.
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PC1 and PC2 explain more than 90% of variance in the data!



Batch effects

Unwanted variation due to suboptimal study designs and technical factors (e.g.,
experiment numbers and sequencing lanes in Bottomly data) cause BATCH EFFECTS

Sometimes itis inevitable that some batch effects exist even with the best efforts in
balanced and randomized design.

Let’s look at how batch effects have reduced the impacts and biological implications of
major studies



Sources of batch effects

@ Methyl Group

Genetics/epigenetics Environments/Experimental Technical



Case Study 1

Comparison of the transcriptional landscapes between human and mouse
tissues

Mouse ENCODE (Encyclopedia of DNA Elements), Lin et al. (2014) Proceedings
of the National Academy of Sciences of the United States of America (IF=11)
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Based on an image by Darryl Leja (NHGRI), lan Dunham (EBI), Michael Pazin (NHGRI)



Mouse ENCODE

To study gene expression levels,

the Consortium collected RNA qr) TO/QQ @
sequencing data from multiple ? ‘ ? ?
\ e

tissues from human and mouse.
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Mouse ENCODE abstract

[Wel performed a comparison of the expression profiles of 15 tissues by deep RNA
sequencing and examined the similarities and differences in the transcriptome for
both protein-coding and -noncoding transcripts. Although commonalities are
evident in the expression of tissue-specific genes between the two species, the
expression for many sets of genes was found to be more similar in different
tissues within the same species than between species. These findings were
further corroborated by associated epigenetic histone mark analyses. We also find
that many noncoding transcripts are expressed at a low level and are not
detectable at appreciable levels across individuals. Moreover, the majority lack

obvious sequence homologs between species, even when we restrict our
attention to those which are most highly reproducible across biological

replicates. Overall, our results indicate that there is considerable RNA expression
diversity between humans and mice, well beyond what was described previously,
likely reflecting the fundamental physiological differences between these two

organisms.
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Loading plots from PCA on human and mouse gene expression data. (A) PCA is performed on the
combined Stanford (human, mouse), Salk (human),HBM (human), LICR (mouse), and CSHL (mouse)
expression datasets using 15 tissue type



Clustering by species vs by tissue

This research, supported by an international team and numerous fundings, caused a big
controversial in the community.

WHY?



Clustering by species vs by tissue

This research, supported by an international team and numerous fundings, caused a big
controversial in the community.

WHY?
Homology: the central concept for all of biology (Wake, 1994 in Science)

Generally, modern biology is built upon the empirical observation that homologous
gene regulatory networks establish the identities of homologous cell-types,
tissues, and organs across species

Manfred D. Laubichler (2000) Homology in Development and the Development of the Homology Concept.
https://academic.oup.com/icb/article/40/5/777/157228



Gilad and Mizrahi-Man (2015) F1L000Research

Recently, the Mouse ENCODE Consortium reported that comparative gene expression
data from human and mouse tend to cluster more by species rather than by tissue. This
observation was surprising, as it contradicted much of the comparative gene regulatory
data collected previously, as well as the common notion that major developmental
pathways are highly conserved across a wide range of species, in particular across
mammals.

Here we show that the Mouse ENCODE gene expression data were collected using a
flawed study design, which confounded sequencing batch [...] with species.

When we account for the batch effect, the corrected comparative gene expression data
from human and mouse tend to cluster by tissue, not by species.



Reconstructed study design
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Without accounting for batch effects
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Figure 2. Recapitulating the patterns reported by the mouse ENCODE papers. a. Two-dimensional plots of principal components
calculated by performing PCA of the transposed log-transformed FPKM values (from 14,744 orthologous gene pairs) for the 26 samples,
after removal of invariant columns (genes). b. Heatmap based on pairwise Pearson correlation of expression data used in panel a. We used
Euclidean distance and complete linkage as distance measure and clustering method, respectively.



Gilad and Mizrahi-Man method

Remove the 30% of genes with the lowest expression

Remove reads that map to the 12 mitochondrial genes

Remove the GC bias (human vs. mouse), by within-column normalization
Normalize for the library sizes for the samples using the trimmed mean of M-values
Log2-transformation

AN O et e

Account for the study design by fitting ‘ComBat’ with batches, species and tissue.

Codes and commands are all available: http://dx.doi.org/10.5281/zenodo.17606



With accounting for batch effects
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Figure 3. Clustering of data once batch effects are accounted for. a. Two-dimensional plots of principal components calculated by
applying PCA to the transposed matrix of batch-corrected log-transformed normalized fragment counts (from 10,309 orthologous gene pairs
that remained after the exclusion steps described in the results) for the 26 samples, after removal of invariant columns (genes). b. Heatmap
based on pairwise Pearson correlation of the expression data used in panel a. We used Euclidean distance and complete linkage as distance
measure and clustering method, respectively.



Discussion on this study designs

See post-publication reviews on https://f1000research.com/articles/4-121

Lin: Provide feedbacks & additional experiments in support of the original claims

Salzberg: Because this batch effect is almost completely confounded with the main
effect reported (the clustering by species), it's nearly impossible to separate the two.

Gilad: Our principal claim is NOT that the data cluster by tissue rather than by species.
Rather, our claim is that your study design does not allow you to address the question of
whether the data cluster better by tissue or species.


https://f1000research.com/articles/4-121

Codes and commands are all available
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Data files and codes used in the reanalysis of
the mouse encode comparative gene
expression data

Orna Mizrahi-Man; Yoav Gilad

We provide supplementary files of the python codes used to process and prepare the data for analysis with R, and the data
files for the python codes. We also provide the R codes we used to perform the different analyses as supplementary files,
as well as the input for the R codes. Please see supplementary text files for more details.
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Case Study 2

Gene expression in the urinary bladder: a common carcinoma in situ (CIS)
gene expression signature exists disregarding histopathological classification.

Dyrskjot, L. et al. (2004) Cancer Research

The second-most frequently cited cancer journal in the world, with an impact factor of > 11

Stained tissue sections showing typical histological
appearance of the different groups of samples used.

A, superficial Ta tumor from a bladder with no CIS

B, superficial Ta tumor from a bladder with surrounding CIS
C, muscle invasive T2+ tumor

D, biopsy with CIS lesion from a bladder removed by
cystectomy

E, biopsy with normal appearing urothelial cells from a bladder
with CIS lesions removed by cystectomy

F, biopsy from a normal bladder showing normal urothelium,
no bladder cancer history.




Motivation: The presence of carcinoma in situ (CIS) lesions in the urinary bladder is
associated with a high risk of disease progression to a muscle invasive stage. Non-invasive
urinalysis assessment strategies would benefit patients.

Group A patient - Ta/T1 tumor, no CIS Group B patient - Ta/T1 tumor, CIS in adjacent mucosa
@ £ @ e Experiments: Gene expression microarray
Superficial tumor .
R f:» analysis to exfoliated urothelia recovered
from bladder washes obtained from 46
patients with subsequently confirmed
presence or absence of bladder cancer.
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Group D patient - Normal urothelium from patient with Group E patient - Cystectomy specimen from patient with CIS
no bladder cancer history
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Urothelia: a specialized type of tissue inside of an urinary tract



Dyrskjot, L. et al. (2004) Cancer Res

Analysis: Data from microarrays containing 56,000 targets was subjected to a panel of
statistical analyses to identify bladder cancer-associated gene signatures. Hierarchical
clustering and supervised learning algorithms were used to classify samples on the
basis of tumor burden.

Results: A differentially expressed geneset of 319 gene probes was associated with the
presence of bladder cancer (P<0.01), and visualization of protein interaction networks
revealed VEGF and AGT as pivotal factors in tumor cells. Supervised machine learning
and a cross-validation approach were used to build a 14-gene molecular classifier
that was able to classify patients with and without bladder cancer with an overall
accuracy of 76%.




Hierarchical cluster analysis of the gene
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Construction of a Molecular CIS Classifier

Ouir first approach was to try to classify sTCC with or without CIS in the surrounding mucosa, based
on tissue from the sTCC. The best classifier performance (one error) was obtained in
cross-validation loops using 25 genes

16 of these were included in 70% of the cross-validation loops, and these were selected to
represent our final classifier for CIS diagnosis. Permutation analysis showed that 13 of these were
significant at a 1% confidence level; the remaining 3 genes were above a 10% confidence level.
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Batch effects in Dyrskjot, L. et al. (2004)

Leek et al. 2010 Tackling the widespread and critical impact of batch effects in high-throughput data
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Leek et al. 2010 Tackling the widespread and critical impact of batch effects in high-throughput data

Table 1 | Batch effects seen for a range of high-throughput technologies

Study description*

Dataset 1: gene

expression microarray,
Affymetrix (Np =22,283)

Dataset 2: gene
expression, Affymetrix
(N, =4167)

Data set 3: mass
spectrometry (N =
15,154)

Data set 4: copy
number variation,
Affymetrix (N =
945,806)

Data set 5: copy
number variation,
Affymetrix (N =

P
945,806)

Data set 6: gene
expression, Affymetrix
(N,=22,277)

Dataset 7: gene
expression, Agilent
(Np =17,594)

Data set 8: DNA
methylation, Agilent
(N,=27,578)

Data set 9: DNA

sequencing, Solexa
(Np =2,886)

Known variable used as a surrogate

Surrogate*

Date

Date

Processing
group

Date

Date

Processing
group

Date

Processing
group

Date

Confounding Susceptible
features
(%)

(%)

29.7

776

100

29.2

122

NA

NA

NA

24.2

50.5

99.5

78.6

Principal components used as a surrogate

Principal
components
rank of
surrogate
(correlation)?

1(0.570)

1(0.922)

2(0.344)

2(0.921)

1(0.553)

5(0.369)

2(0.248)

3(0.381)

2(0.846)

Principal
components
rank of
outcome
(correlation)”

1(0.649)

1(0.668)

2(0.344)

3(0.485)

1(0.137)

NA

NA

NA

2(0.213)

Susceptible
features
(%)**

98.5

99.7

99.8

99.8

971

99.8

Association Refs

with

outcome

Significant

features

(%)*

71.9 9

62.2 2

517 3

98.8 16

74.1 17

NA 18

NA 18

NA 18

16.9 1000
Genomes

Project

The first three rows represent
studies for which batch effects
have been described in the
literature.

Rows four and five are from
genome-wide association
study data sets.

Rows six to eight represent
data from The Cancer Genome
Atlas (TCGA).

Finally, the last row represents
second-generation sequencing
data from the 1000 Genomes
Project.



How to account for batch effects?

Exploration
Visualize
Modeling
Estimation

Overall, there are MANY methods. We look at 2 most popular methods.



Exploratory analyses

Hierarchically cluster the samples and label them with biological variables and batch surrogates (such as

laboratory and processing time)

Plot individual features versus biological variables and batch surrogates

.

Calculate principal components of the high-throughput data and identify components that correlate
with batch surrogates

Leek et al. 2010



Downstream analyses

Do you believe that measured batch surrogates (processing time, laboratory, etc.) represent the only
potential artefacts in the data?

Yesl lNo

Use measured technical variables as surrogates Estimate artefacts from the high-throughput data
for batch and other technical artefacts directly using surrogate variable analysis (SVA)

l l

Perform downstream analyses, such as regressions, t-tests or clustering, and adjust for surrogate or
estimated batch effects. The estimated/surrogate variables should be treated as standard covariates,
such as sex or age, in subsequent analyses or adjusted for use with tools such as ComBat

Diagnostic analyses

Use of SVA and ComBat does not guarantee that batch effects have been addressed. After fitting
models, including processing time and date or surrogate variables estimated with SVA, re-cluster the
data to ensure that the clusters are not still driven by batch effects

Leek et al. 2010



Linear model

Conventionally, a linear model is used for relating a biological variable and an observed
genomic data:

Y=BX+E

Y = Observed genomic data, containing m variables (rows) and n observations (cols)

X = Biological variables

E = Independently and identically distributed (i.i.d.) noise



Linear model, with dependent noise

Y=BX+E

When we fail to model batch effects in this linear model, there is a dependence across
the noise term E (e.g., no longeri.i.d.)

If we know the technical variable, we may include them as covariates in a linear model.



Linear model, with technical variables
Y=BX+E
=BX+IG+ U

X = Biological variables
G =Technical variables

U = i.i.d. Noise



Boxplots of data, within each batch

Expression Values

g o]
i3 8
0 : 3 e
R 8 : 5
! - 8 ° ! o)
T & f s
- i+ — | — —
— ., | F It i
I A T I 3 il 2
T . T =
I ? I I I I I I I 1 ? I
1 2 3 . - 5 6 1 2 3 4 5 6
Processing Batch Processing Batch
Before L/S adjustments After L/S adjustments

Cuklina et al (2019)



Location and scale (L/S) adjustments

A wide family of adjustments in which one assumes a model for the location (mean) and/or
scale (variance) of the data within batches and then adjusts the batches to meet assumed model
specifications.

Therefore, the batch effects can be modeled out by standardizing means and variances across
batches

The simplest approach for L/S batch adjustment is to mean center and standardize the variance
of each batch for each gene independently.

In more complex situations such as unbalanced designs or when incorporating numerical
covariates, use a general L/S framework:

Johnson et al (2007)



General L/S framework

Yiig = ag + XpPg + yig + Oig€ijg

Yo : observed data - - the expression value for gene g for sample j from batch i
Contain m batches containing n, samples within batch i for i=1,...,m, for gene and g-1,...,G
X : biological variables -- a design matrix for sample conditions
B, : regression coefficients corresponding to X
¥, additive batch effects of batch i for gene g
5

g’ multiplicative batch effects of batch i for gene g

¢ : noise with mean zero and variance ¢ .

Johnson et al (2007)



Empirical Bayes approach with ComBat

The most important disadvantage of many existing methods is that large batch sizes are required
for implementation because such methods are not robust to outliers.

ComBat make this possible even for a smaller sample size by:

1. Estimating the L/S model parameters that represent the batch effects by “pooling

information” across genes in each batch
2. Shrinking the batch effect parameter estimates toward the overall mean of the batch effect

estimates (across genes)

Johnson et al (2007)



ComBat algorithm

1. Standardize the data

Standardize gene-wise so that genes have similar overall mean and variance
Standardized data, Zijg, satisfy the distributional form, Zijg ~ N(yig,Szig)

Batch effect parameter estimates using parametric empirical priors

2.
Johnson et al (2007) uses the following priors y;, ~ N(¥;,7) and &7, ~ Inverse Gamma (/;, 6))
Those hyperparameters are estimated from the standardized data, Zijg
Then, the posteriors are . S = q 3
= o and Jj; = T
niT; + 0 5+ +4i—1

Vig =

3. Adjust the data for batch effects with
(Zijg — ;\i*g) +ag + Xﬁg

),

* —
Vijg =

7

ig

Johnson et al (2007)
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Fig. 1. Heat map clusterings for data set 1. The gene-wise expression values are used to compute gene and sample
correlations and displayed in color scale, and the sample legends on the top are 0 (0 h), 7 (7.5 h), C (Control), and N
(NO treated). (a) Expression for 628 genes with large variation across all the 12 samples. Note that the samples from
the batch 2 cluster together and the baseline (time = 0) samples also cluster by batch 1 and 3; (b) 720 genes after
applying “standardized separators” (which standardize each gene within each batch to have a mean 0 and variance
of 1) for gene filtering and clustering in the dChip software; (c) 692 genes after applying the EB batch adjustments
and then filtered for clustering. Note that there is no strong evidence of batch effects after adjustment in heat maps
(b)—(c). The EB adjustment in (c) has the advantage of being robust to outliers in small sample sizes.



Shrinkage

Mean and Variance Shrinkage
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Fig. 3. Shrinkage plot for the first 200 probes from one of the batches in data set 1. The gene-wise and EB estimates
of y;g and (51'2g in Section 3.1 are plotted on the ¥ and X axis. Open circles are the gene-wise values and the solid are
after applying the EB shrinkage adjustment.



