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Course survey
Thereʼs an amazing football player, who scored 1 goal per game last year!

On average, the main strikers in this league have an average 0.4 goals per game.

You are asked to predict what this amazing playerʼs this year average goal/game

Lewandowski has 0.56 goal/game (Poland); 0.48 goal/game (Barcelona) 
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Simple Linear Model
Letʼs review a simple linear model:

yi = b0 + b1xi1 + ei1

y: a dependent variable
x: a independent variable
b0: an intercept
b1: a coefficient
e: independently and identically distributed (i.i.d.) noise

Given many data for y and x, the method of least square provides estimates for b0 and b1



Multiple Linear Model
We look at multiple observations and independent variables simultaneously:

yi = b0 + b1xi1 + … + bpxip + ei

yi for i = 1, … , n is an observed measurement (e.g., gene expression)
xj for j = 1, …, p makes p independent variables

   e.g., X1
 may be a vector of ages

            X2
 may be a vector of susceptibility to a given disease

            X3
 may be a sequencing lane number

  …… 
   

y indicates a scalar, y indicates a vector, Y/Y indicates a matrix.
A vector tends to indicate a column vector, but not always.

Notations are confusing and dependent on domains and contexts. 
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Multiple Linear Model

y  =       X       b      +    e
This linear model is what we solve in lm() function

e.g.,    mod = lm(y ~ x)

Estimation and significance testing on b is of our interest



Least square estimator
● The method of least squares is the de facto standard method to estimate the 

coefficients. 
● Minimizing the sum of the squares of the residuals
● Itʼs the maximum likelihood estimation when the noise is normally distributed with 

equal variances. 

● Gauss–Markov theorem: itʼs the best linear unbiased estimator of the coefficients



Linear Model in a Matrix Form
Finally, we consider m variables of n observations
As a convention, we are stacking vectors (y1 y2 … ym) as rows into a m x n matrix Y:

Y   =   B  X    +   E
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As we discussed gene expression

Y   =   B  X    +   E

Y = Observed genomic data, containing m variables (rows) and n observations (cols)

X = Biological variables

E = Independently and identically distributed (i.i.d.) noise



p=1 independent variable
Y =  BX     +   E
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Consider thereʼs p=1 
variable labeling samples

We are interested in 
estimating coefficients, 
for m genes



Least squares with a large m

● Estimate each bij independently via minimizing the sum of the squares of 
the residuals

● For each variable i = 1, …, m, the errors are uncorrelated, a mean of zero, 
equal variances (a.k.a. optimal)

● However, when we are dealing with a large data -- many m variables, 
measured on a set of n observations --, consider a bias variance tradeoff

● Simply put, we may able to get “better” estimates by reducing variance 
and increasing bias

● Read more on James–Stein estimator



Shrinkage, simplified example

b1 
b2

 b3 
b4
b5 
b6
b7 
b8

0.5 
1.1
 0.1
-2.1
0.2 
-1.2
-0.4
-0.2

Least Squares 
estimation

Mean = -.25
Var = 1.01

0.4 
0.9

 0.05
-1.9
0.1 
-1.1
-0.3
-.15

Shrinking toward 
the mean

Mean = -.25
Var = 0.77



Predicting a baseball player’s batting average

In sports analytics, we often want to predict a playerʼs statistics in the future. 
E.g., a batting average = # of a baseball player's hits divided by # of at-bats.

Given the last yearʼs data on batting averages, you are tasked with
predicting playersʼ batting average next year.

The unbiased linear model would suggest that you use the individual playerʼs batting average 
from the last year as the predicted average for the next year.

We can do much better. 



Batting averages, in the past
Betting Averages of 9,256 baseball players in the US major leagues

Adapted from 
http://varianceexplained.org/r/empirical_bayes_baseball/

Is this the best player
In terms of betting average?

Will these players have an 
average of 0.0 again next year?

Mean



Lahman (R package) has the data
library(Lahman)

H = Hit
AB = At Bats



Batting averages, shrinkage
The future predictions should be regressed towards the mean



Prior distribution (empirical Bayes approach)
1. Remove pitchers 
2. Filter out all players that have fewer than 500 at-bats
3. Fit a Beta distribution to the remaining data 

X ~ Beta(α0, β0)

career <- Batting %>%

  filter(AB > 0) %>%

  anti_join(Pitching, by = "playerID") %>%

  group_by(playerID) %>%

  summarize(H = sum(H), AB = sum(AB)) %>%

  mutate(average = H / AB)

career_filtered <- career %>%

    filter(AB >= 500)

m <- MASS::fitdistr(career_filtered$average, dbeta,

                    start = list(shape1 = 1, shape2 = 10))

alpha0 <- m$estimate[1]

beta0 <- m$estimate[2]

α0=78.661     β0=224.875



Estimate an individual’s batting avg
We are using the estimated Beta distribution. Then update the individualʼs batting average 
accordingly. 

Instead of averagesample = H/AB
         averageEB  = (H+α0)/(AB +α0+β0) 

EXAMPLE: Batter A with at-bats = 1000 and hits = 300 
          Batter B with at-bats = 10 and hits = 4

averageA = (300+α0)/(1000 +α0+β0) =  (300+78.7)/(1000 +78.7+224.9) = 0.29
averageB = (4+α0)/(10 +α0+β0) =  (4+78.7)/(10 +78.7+224.9) = 0.264



Shrinkage in baseball



Bladder cancer data, Dyrskjøt et al. (2004)

Means of 22,281 genes Variances of 22,281 genes

Mean Variance



Shrinkage in large scale modeling

● Regression towards mean
● Apply implicitly or explicitly.

○ Visualizing a box plot 
○ Outliers are removed in a quality control step
○ Removing minimally expressed genes or zero expression values
○ In different batches, means/variances must be similar
○ Coefficients are considered simultaneously 
○ Models accounts for a large m -- learning from all the data



Linear model, with technical variables

Y = BX + E

= BX + ΓG + U
X = Biological variables 

G = Technical  variables 

U =  i.i.d. Noise 

*Note that we are now dropping the bold notation. 



Boxplots of data, within each batch
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Processing Batch
Before L/S adjustments After L/S adjustments

Čuklina et al (2019)



Location and scale (L/S) adjustments

A wide family of adjustments in which one assumes a model for the location (mean) and/or 
scale (variance) of the data within batches and then adjusts the batches to meet assumed model 
specifications. 

Therefore, the batch effects can be modeled out by standardizing means and variances across 
batches

The simplest approach for L/S batch adjustment is to mean center and standardize the variance 
of each batch for each gene independently. 

In more complex situations such as unbalanced designs or when incorporating numerical 
covariates, use a general L/S framework:

Johnson et al (2007) 



Bayesian statistics 

Bayesian statistics update probabilities, after obtaining new data

P(A|B) = P(B|A) P(A) / P(B) for now assume P(B) ≠ 0

A:  a proposition, or a prior belief
B:  an evidence, or observed data

→ Obtain a posterior probability, from a prior probability based on our data

Johnson et al (2007) 



Frequentist and Bayesian statistics

Frequentist Bayesian

Hypothesis test p-value Bayes factor

Estimation Maximum likelihood 
estimate with confidence 
interval

Posterior distribution 

Probability Frequency (Objective) Degree of belief 
(Subjective)

Parameter Fixed Random variable



Empirical Bayes

In a standard Bayesian, a prior = fixed before data 

In empirical Bayes, a prior distribution is estimated from the data

No need to impose or have a strong prior belief 

Bridging two sides of statistical traditions

Appropriate for modeling large-scale biological data 



Empirical Bayes

Steinʼs Paradox in Statistics by Efron & Morris (1977)

When three or more parameters are estimated simultaneously, there exist combined 
estimators more accurate on average (lower expected mean squared error) than any 
method that handles the parameters separately - Wikipedia

Named after Charles Stein, famous for  James & Stein (1961)



General L/S framework 

Yijg : observed data -- the expression value

for sample j from batch i containing m batches

ni samples within batch i for i=1,…,m 
for gene g=1,…,G 

X : biological variables -- a design matrix for sample conditions

βg : regression coefficients corresponding to X

γig : additive batch effects of batch i for gene g

δig  : multiplicative batch effects of batch i for gene g

ε : noise with mean zero and variance σ2
g Johnson et al (2007) 



Empirical bayes approach with ComBat

The most important disadvantage of many existing methods is that large batch sizes are required 
for implementation because such methods are not robust to outliers.

ComBat make this possible even for a smaller sample size by:

1. Estimating the L/S model parameters that represent the batch effects
by pooling information across genes in each batch

2. Shrinking the batch effect parameter estimates toward the overall mean of the batch effect 
estimates (across genes)

Johnson et al (2007) 



ComBat algorithm

1. Standardize the data
Standardize gene-wise so that genes have similar overall mean and variance
Standardized data, Zijg , satisfy the distributional form, Zijg ∼ N(γig,δ2

ig)
 

2. Batch effect parameter estimates using parametric empirical priors
Johnson et al (2007) uses the following priors
Those hyperparameters are estimated from the standardized data, Zijg 
Then, the posteriors are 

3. Adjust the data for batch effects with

Johnson et al (2007) 



Shrinkage in gene expression



Coefficients, LM vs. ComBat (EB shrinkage)



Leek et al. 2010



Surrogate Variable Analysis

Y = BX + ΓG + U
Leek & Storey (2007) Capturing Heterogeneity in Gene Expression Studies by Surrogate 
Variable Analysis 

What if the technical variables G are not known.

We can estimate ΓG through an iterative process. 

“Surrogate variables” are replacing (unknown and unmeasured) technical variables.



Surrogate Variable Analysis (SVA)
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The fundamental idea behind SVA

UNKNOWN
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STEP 1. Simply fitting a linear model
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STEP 2. Find genes (yi) with “very small” coefficients (≈ 0)

≈ 0

These set of gene expression values are not associated with X.
Therefore, any systematic variation in this subset may be 
associated with technical variables
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STEP 3. Apply SVD on Y with ~0 coefficients

= 0

Apply SVD
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STEP 4. Taking the r Singular Vectors as r Surrogate Variables
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Apply SVD
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Now Estimated!
STEP n. Based on this basic procedure, Leek and others

    build more complex and accurate algorithms.



Remove unwanted var.

simulated microarray; 1,000 genes x 20 arrays.

Genes 1–300 in this simulated study 
are differentially expressed

Genes 201–500 in each simulated 
study are affected by an 
“technical” factor

Keep biological/relevant 
variation

Remove unwanted
variation

What the dependence 
kernel attempts to 
estimate

Whatʼs interesting to us!
Also, what is measured.

Leek & Storey (2007)



Removing unwanted variations

Null
Variables

Leek & Storey (2007)


