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Course survey

There’s an amazing football player, who scored 1 goal per game last year!
On average, the main strikers in this league have an average 0.4 goals per game.
You are asked to predict what this amazing player’s this year average goal/game

Lewandowski has 0.56 goal/game (Poland); 0.48 goal/game (Barcelona)
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Simple Linear Model

Let’s review a simple linear model:
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y: a dependent variable

X: a independent variable

b : an intercept

b.: a coefficient

e: independently and identically distributed (i.i.d.) noise

Given many data for y and x, the method of least square provides estimates for b and b,



Multiple Linear Model

We look at multiple observations and independent variables simultaneously:

= + + + +
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y. is an observed measurement (e.g., gene expression)
X makes p independent variables

e.g., X, may be a vector of ages
X, may be a vector of susceptibility to a given disease

X, may be a sequencing lane number

y indicates a scalar, y indicates a vector, Y/Y indicates a matrix.
A vector tends to indicate a column vector, but not always.
Notations are confusing and dependent on domains and contexts.



Multiple Linear Model
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Multiple Linear Model

y= X b + e
This linear model is what we solve in Im() function
e.g., mod = Im(y ~ Xx)

Estimation and significance testing on b is of our interest



Least square estimator

e The method of least squares is the de facto standard method to estimate the
coefficients.

e Minimizing the sum of the squares of the residuals

e |t’sthe maximum likelihood estimation when the noise is normally distributed with
equal variances.

e Gauss-Markov theorem: it’s the best linear unbiased estimator of the coefficients



Linear Model in a Matrix Form

Finally, we consider m variables of n observations
As a convention, we are stacking vectors (y, y, ...y _) as rows into a m x n matrix Y:

Y=BX+E
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As we discussed gene expression

Y=BX+E

Y = Observed genomic data, containing m variables (rows) and n observations (cols)
X = Biological variables

E = Independently and identically distributed (i.i.d.) noise



p=1 independent variable
Y=BX + E
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Consider there’s p=1
variable labeling samples

We are interested in
estimating coefficients,
for m genes




Least squares with a large m

e Estimate each bij independently via minimizing the sum of the squares of

the residuals
e Foreachvariablei=1,...,m,the errors are uncorrelated, a mean of zero,

equal variances (a.k.a. optimal)

e However, when we are dealing with a large data -- many m variables,
measured on a set of n observations --, consider a bias variance tradeoff

e Simply put, we may able to get “better” estimates by reducing variance
and increasing bias

e Read more on James-Stein estimator




Shrinkage, simplified example

bl 0.5 0.4
b2 1.1 0.9
b3 Least Squares 0.1 Shrinking toward 0.05
b4 estimation -2.1 the mean -1.9

1 b, [ — 1027 — 1 01
b, 1.2 ‘1.1
b, -0.4 -0.3
b, -0.2 -15

Mean = -.25 Mean = -.25

Var = 1.01 Var = 0.77



Predicting a baseball player's batting average

In sports analytics, we often want to predict a player’s statistics in the future.
E.g., a batting average = # of a baseball player's hits divided by # of at-bats.

Given the last year’s data on batting averages, you are tasked with
predicting players’ batting average next year.

The unbiased linear model would suggest that you use the individual player’s batting average
from the last year as the predicted average for the next year.

We can do much better.



Batting averages, in the past

Betting Averages of 9,256 baseball players in the US major leagues
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1

1000

Will these players have an
average of 0.0 again next year?

Is this the best player
In terms of betting average?
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Adapted from
http://varianceexplained.org/r/empirical_bayes_baseball/



Lahman (R package) has the data

library (Lahman)

career

it
#i#
##
#i
#i#
#H
#i#
#i#
#it
#i#
#iH
#i#
#i#
#i#

#H ..

Source: local data frame [9,256 x 4]
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name
(chr)

Hank Aaron
Tommie Aaron
Andy Abad

John Abadie

Ed Abbaticchio
Fred Abbott
Jeff Abbott
Kurt Abbott
Ody Abbott

10 Frank Abercrombie

H AB average
(int) (int) (dbl)
3771 12364 0.3050
216 944 0.2288
2 21 0.0952

11 49 0.2245
772 3044 0.2536
107 513 0.2086
157 596 0.2634
523 2044 0@.2559
13 70 0.1857
(/] 4 0.0000

H=Hit
AB = At Bats



Batting averages, shrinkage

Frequency

The future predictions should be regressed towards the mean
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Prior distribution (empirical Bayes approach)

1.
2.
3.

Remove pitchers
Filter out all players that have fewer than 500 at-bats

Fit a Beta distribution to the remaining data
X~ Beta(a,, B,)

career <- Batting %>%

summarize (H

filter (AB > 0) %>%
anti join(Pitching, by = "playerID") $%>%
group by (playerID) %>%

= sum(H), AB = sum(AB)) %>%

mutate (average = H / AB)

career filtered <- career %>%

filter (AB >= 500)
m <- MASS::fitdistr (career filtered$average, dbeta,

list(shapel = 1, shape?2

start =

alpha0 <- m$estimate[1]
betal <- m$estimate[2]

10))

a,=78.661 B,=224.875
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Estimate an individual's batting avg

We are using the estimated Beta distribution. Then update the individual’s batting average
accordingly.

Instead of average .= H/AB
average . = (H+a)/(AB +a+f )

EXAMPLE: Batter A with at-bats = 1000 and hits =300
Batter B with at-bats =10 and hits=4

average, = (300+a,)/(1000 +a+B ) = (300+78.7)/(1000 +78.7+224.9) = 0.29
average, = (4+a,)/(10 +a +B ) = (4+78.7)/(10 +78.7+224.9) = 0.264



Shrinkage in baseball
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Frequency

Bladder cancer data, Dyrskjot et al. (2004)

Means of 22,281 genes Variances of 22,281 genes
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Shrinkage in large scale modeling

e Regression towards mean
e Apply implicitly or explicitly.

@)

O O O O O

Visualizing a box plot

Outliers are removed in a quality control step

Removing minimally expressed genes or zero expression values
In different batches, means/variances must be similar
Coefficients are considered simultaneously

Models accounts for a large m -- learning from all the data



Linear model, with technical variables
Y=BX+E
=BX+IG+ U

X = Biological variables
G =Technical variables
U = i.i.d. Noise

*Note that we are now dropping the bold notation.



Boxplots of data, within each batch
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Location and scale (L/S) adjustments

A wide family of adjustments in which one assumes a model for the location (mean) and/or
scale (variance) of the data within batches and then adjusts the batches to meet assumed model
specifications.

Therefore, the batch effects can be modeled out by standardizing means and variances across
batches

The simplest approach for L/S batch adjustment is to mean center and standardize the variance
of each batch for each gene independently.

In more complex situations such as unbalanced designs or when incorporating numerical
covariates, use a general L/S framework:

Johnson et al (2007)



Bayesian statistics

Bayesian statistics update probabilities, after obtaining new data
P(A|B) = P(B|A) P(A) / P(B) for now assume P(B) #0

A: a proposition, or a prior belief
B: an evidence, or observed data

> Obtain a posterior probability, from a prior probability based on our data

Johnson et al (2007)



Frequentist and Bayesian statistics

Hypothesis test

Estimation

Probability

Parameter

Frequentist

p-value

Maximum likelihood
estimate with confidence
interval

Frequency (Objective)

Fixed

Bayesian

Bayes factor

Posterior distribution

Degree of belief
(Subjective)

Random variable



Empirical Bayes

In a standard Bayesian, a prior = fixed before data

In empirical Bayes, a prior distribution is estimated from the data
No need to impose or have a strong prior belief

Bridging two sides of statistical traditions

Appropriate for modeling large-scale biological data



Empirical Bayes

Stein’s Paradox in Statistics by Efron & Morris (1977)

When three or more parameters are estimated simultaneously, there exist combined
estimators more accurate on average (lower expected mean squared error) than any
method that handles the parameters separately - Wikipedia

Named after Charles Stein, famous for James & Stein (1961)

ESTIMATION WITH QUADRATIC LOSS

W. JAMES
FRESNO STATE COLLEGE

AND

CHARLES STEIN
STANFORD UNIVERSITY



General L/S framework

Yiig = ag + XpPg + yig + Oig€ijg

Yo - observed data -- the expression value
for sample j from batch i containing m batches
n, samples within batch i for i=1,...,m
for gene g=1,...,G
X : biological variables -- a design matrix for sample conditions
B, : regression coefficients corresponding to X
¥, additive batch effects of batch i for gene g
5

g’ multiplicative batch effects of batch i for gene g

¢ : noise with mean zero and variance ¢

g Johnson et al (2007)



Empirical bayes approach with ComBat

The most important disadvantage of many existing methods is that large batch sizes are required
for implementation because such methods are not robust to outliers.

ComBat make this possible even for a smaller sample size by:

1. Estimating the L/S model parameters that represent the batch effects

by pooling information across genes in each batch
2. Shrinking the batch effect parameter estimates toward the overall mean of the batch effect

estimates (across genes)

Johnson et al (2007)



ComBat algorithm

1. Standardize the data

Standardize gene-wise so that genes have similar overall mean and variance
Standardized data, Zijg, satisfy the distributional form, Zijg ~ N(yig,Szig)

Batch effect parameter estimates using parametric empirical priors

2.
Johnson et al (2007) uses the following priors y;, ~ N(¥;,7) and &7, ~ Inverse Gamma (/;, 6))
Those hyperparameters are estimated from the standardized data, Zijg
Then, the posteriors are . S = q 3
= o and Jj; = T
niT; + 0 5+ +4i—1

Vig =

3. Adjust the data for batch effects with
(Zijg — ;\i*g) +ag + Xﬁg

),

* —
Vijg =

7

ig

Johnson et al (2007)



Shrinkage in gene expression

Mean and Variance Shrinkage
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Fig. 3. Shrinkage plot for the first 200 probes from one of the batches in data set 1. The gene-wise and EB estimates
of y;¢ and 51.2 in Section 3.1 are plotted on the ¥ and X axis. Open circles are the gene-wise values and the solid are
after applying the EB shrinkage adjustment.



Coefficients, LM vs. ComBat (EB shrinkage)

LinearModel



Downstream analyses

Do you believe that measured batch surrogates (processing time, laboratory, etc.) represent the only
potential artefacts in the data?

Yesl lNo

Use measured technical variables as surrogates Estimate artefacts from the high-throughput data
for batch and other technical artefacts directly using surrogate variable analysis (SVA)

l l

Perform downstream analyses, such as regressions, t-tests or clustering, and adjust for surrogate or
estimated batch effects. The estimated/surrogate variables should be treated as standard covariates,
such as sex or age, in subsequent analyses or adjusted for use with tools such as ComBat

Diagnostic analyses

Use of SVA and ComBat does not guarantee that batch effects have been addressed. After fitting
models, including processing time and date or surrogate variables estimated with SVA, re-cluster the
data to ensure that the clusters are not still driven by batch effects

Leek et al. 2010



Surrogate Variable Analysis

Y=BX+IG+U

Leek & Storey (2007) Capturing Heterogeneity in Gene Expression Studies by Surrogate
Variable Analysis

What if the technical variables G are not known.

We can estimate [G through an iterative process.

“Surrogate variables” are replacing (unknown and unmeasured) technical variables.




Surrogate Variable Analysis (SVA)

EXISTING APPROACHES

Dependence and bias
are still present here...

Empirical null
approaches modify the MTPs for dependence
“theoretical null” make conservative
distribution at the adjustments to the
threshold

test-statistic level

Fit Model Obtain Form Test-Statistics and Calculate Form P-value
Data X A
ataX e}  _psif T hoap Null Distribution P-values Threshold
l )
|
We instead utilize ————> Dependence and bias are no longer present at any of these stages
X=BS+IG+U — standard methods can be used

where G is a valid
“dependence kernel”

PROPOSED APPROACH

Fig. 1. A schematic of the general steps of multiple hypothesis testing. We directly account for multiple testing dependence in the model-fitting step, where
all the downstream steps in the analysis are not affected by dependence and have the same operating characteristics as independent tests. Our approach
differs from current methods, which address dependence indirectly by modifying the test statistics, adaptively modifying the null distribution, or altering
significance cutoffs. For these downstream methods the multiple testing dependence is not directly modeled from the data, so distortions of the signal of
interest and the null distribution may be present regardless of which correction is implemented.



The fundamental idea behind SVA
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STEP 1. Simply fitting a linear model

Y =B
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STEP 2. Find genes (y.) with “very small” coefficients (= 0)
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These set of gene expression values are not associated with X.
Therefore, any systematic variation in this subset may be
associated with technical variables
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STEP 3. Apply SVD on Y with ~0 coefficients

Y =B X
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STEP 4. Taking the r Singular Vectors as r Surrogate Variables

Y =B X +
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STEP n. Based on this basic procedure, Leek and others

build more complex and accurate algorithms.
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Remove unwanted var.

Genes 1-300 in this simulated study
B are differentially expressed
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Removing unwanted variations

¥ Subtract I'G
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Noise Independent

Null
Variables
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Null P-values Biased ~ Null P-values Unbiased Null P-values Biased ~ Null P-values Unbiased
KS Test P <0.0001 KS Test P =0.1764 KS Test P <0.0001 KS Test P =0.9597

Leek & Storey (2007)



