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Inference vs. Prediction
There are, generally speaking, two sides of data analysis (or data science). 

Statisticians care more about inference

to learn about the data generating process.

Machine learning focuses more on prediction

to predict the outcomes of the new data. 

Our modeling choices depends on our goals



Inference 

DataPopulation

Sampling

Inference

● “Data Modeling Culture” by Leo Breiman
● Extract information from the data about the underlying mechanism producing the data.
● Inferring the important characteristics of the population relies on accurate and robust models, 

estimation methods, and interpretations. 
● Model interpretability is the most critical for accurate inference.
● E.g., Generalized linear models (linear or logistic regression), generalized additive model



Inference

1. Modeling: Reason about the data generation process and 
choose the stochastic model that approximates the data 
generation process best.

2. Model validation: Evaluate the validity of the stochastic 
model using residual analysis or goodness-of-fit tests.

3. Inference: Use the stochastic model to understand the 
data generation process.



Prediction

Population

● “Algorithmic Modeling Culture” by Leo Breiman
● Predictive models are created solely based on their performance in predicting the 

testing set (not in the training set). Thus, it does not need to understand or elucidate 
the actual data generation process.

● Interpretability isnʼt a focus, although it often becomes important. 
● E.g.,  support vector machines, decision trees, neural networks, random forests

Data

Training set Predictive Model

f(x) = Y



Prediction

1. Modeling: Consider several different models and different 
parameter settings.

2. Model selection: Identify the model with the greatest 
predictive performance using validation/test sets; select 
the model with the highest performance on the test set.

3. Prediction: Apply the selected model on new data with 
the expectation that the selected model also generalizes 
to the unseen data.



Statistical Modeling: The Two Cultures

1. Rashomon: the multiplicity of good models
a. Small perturbation to the data may result in different good models.
b. Different subset of features could be selected with similar performances.

2. Occam’s Razor: the conflict between simplicity and accuracy
a. The simple models are often more robust or generalizable
b. The complicated models (e.g., neural nets) would provide higher accuracy (LMs)

3. Richard Bellman: dimensionality - curse or blessing?
a. “The curse of dimensionality” advises us to reduce the features 
b. We can leverage weak predictors in many features to obtain a strong predictor

→ “The goal is not interpretability, but accurate information.”

Leo Breiman (2001)



Leo Breiman (2001)

Data Modeling / Inference Algorithmic Modeling / Prediction

Data Generation Process

Medical doctors care about interpretability, 
even if an algorithm may provide a higher 
accuracy.

Genetics researchers may focus only on 
inference as the goal is to understand the 
mechanisms.

Algorithms for image classification and 
localization do not need to have 
interpretability.

The “unknown” nature may be too complex to 
make reasonably simple models.



Prediction and Inference, in practice 

Research at the intersection of those two cultures, since Breiman’s 2001 paper.

Some methods are used in both ways -- e.g., a logistic regression

The ultimate goal is to bridge this gap from either side.

In machine learning, interpretability is one of the most important topics currently. 

In statistical learning, sensitivity and specificity mirrors that in prediction.

Feature selection can be seen in both cultures, with an increasing importance



Feature selection in the context

Mirza et al. 2019



Feature selection 

With a large dataset with many features, we want to carry out feature selection:

● Occamʼs Razor
● Training or converging faster 
● Reduces the complexity of a model.
● Easier to interpret and to generalize.
● Potentially improves the performance / accuracy of a model
● Prevent overfitting.



Filter methods
Filter methods are used to select a subset of relevant features independent of any 
model, oftening as a preprocessing step.

Selected simply on their statistics or metrics with respect to the outcome variable.

Many of the filter methods are univariate and often dont consider co-linearity

Mirza et al. 2019; 
http://analyticsvidhya.com



Wrapper methods
Search for the best feature combination by training a particular predictive model 
repeatedly

Keep the best or worst performing subsets

Boruta with random forests; and Jackstraw with latent variables

Mirza et al. 2019; 
http://analyticsvidhya.com



Embedded methods

Mirza et al. 2019; 
http://analyticsvidhya.com

The algorithms with built-in feature selection methods such that they perform feature 
selection as a step toward predictive model building. 

Embedded methods are in between filter and wrapper methods in terms of 
computational complexity. 

E.g., Lasso, elastic net, penalized matrix decompositions



Linear Model
Consider m variables of n observations
As a convention, we are stacking vectors (y1 y2 … ym) as rows into a m x n matrix Y:

Y   =   B  X    +   E
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Linear Model
Consider m variables of n observations
As a convention, we are stacking vectors (y1 y2 … ym) as rows into a m x n matrix Y:

Y   =   B  X    +   E

A linear model is an example of supervised learning

Estimation and significance testing on bi help us identify yi that are associated with X

Known and measured



Supervised vs. unsupervised learning

Microarray, RNA-seq, and others When independent (e.g., biological) variables 
are known, we conduct supervised learning.

With unknown independent variables, 
use unsupervised learning



Jackknife

Efron (1982), Wikipedia

Given a sample of size n, a jackknife estimator can be built by aggregating the parameter estimates 
from each subsample of size (n − 1) obtained by omitting one observation.

jackknife replicate



Bootstrap: random sampling with replacement

Efron (1979), Wikipedia

The basic idea of bootstrapping is that inference about a population from sample data (sample → population) can be modeled 
by resampling the sample data and performing inference about a sample from resampled data (resampled → sample).

As the population is unknown, the true error in a sample statistic against its population value is unknown. In 
bootstrap-resamples, the 'population' is in fact the sample, and this is known; hence the quality of inference of the 'true' sample 
from resampled data (resampled → sample) is measurable.



Bootstrap, further variations

Efron (1979), Wikipedia

Parametric bootstrap:
Fit a parametric model and sampling from the fitted model

Smooth bootstrap:
Add random noise to each resampled observations. i.e., sampling from a kernel 

density estimate of the data

Resampling residual in regression



Latent Variable Model
Statistical & principled model for unsupervised learning

Y   =   B  L    +   E
Unknown or unmeasured



Latent variable as a conditional expectation

Expected influence of z on Y by E[Y|z],

Y = E[Y|z] + E
Estimate L(z), that is a row basis for E[Y|z]

This low dimensional  L(z) is manifestation of the latent variables in the data.

When clear in context, we simply write L. Most of time, z is not knowable.



General latent variable models

Y = BL + E

L is estimate by the top r PCs (or related quantities), which we call VT
r resulting in

Y = ΓVT
r + E’

E’ denotes that itʼs an error term but distinct from the original E 



Manifestation of latent variables



Molecular signatures ~ latent variables

In a right context, latent variables may contains molecular information about the 
experiments, environments, or diseases.

Even when some information is captured by labels (e.g., potential candidates for 
independent variables), they may not be accurate or precise.

In absence of independent variables, we would like to conduct significance testing with 
respect to latent variables (analogous to one in a linear model)



General latent variable models

Y = BL + E

 = ΓVT
r + E’

● Directly using VT
r isnʼt testing the association between Y and L.

● VT
r depends on Y.

● The association between Y and VT
r are likely to be significant



Association tests between Y and L

Goal: which observed variables (e.g., genes) are statistically significantly related to the 
latent variables?

Solution: use the latent variable estimates (e.g., PCs) in association tests, while 
accounting for the fact that the latent variable estimates depend on the data



Jackstraw procedures

Chung and Storey (2015)
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Simulation study

Y = BL + E
Simulating a case vs. control gene expression study, where 5% of genes are associated with L

Number of variables m = 1000

Number of observation n = 20

Proportion of null variables = .95

Latent variable function form L ~ dichotomous shift 

Non-null coefficients ~i.i.d Uniform(0,1)



Illustrated example

Y = BL + E

= ΓVT
r + E’

Simulate a data Y from where B, L, E that are generated following certain distributions
Compare two approaches, by looking at p-values associated with null variables (null p-values) 

1. Naive association testing (e.g., conventional linear model) between Y and VT
r 

2. Correct association testing (e.g., the jackstraw) between Y and L



Null p-values evaluation
Evaluate statistical tests by looking at p-values associated with null variables (null p-values)

1. 2.

Red dashed lines indicates a theoretically correct distribution



To be sure, try diverse scenarios and
use a Kolmogorov–Smirnov (KS) test for uniformity



Application in gene expression study

(A) Gene expression patterns for cell cycle–regulated genes. The 800 genes 
are ordered by the times at which they reach peak expression.

The cell cycle patterns are needed to identify genes under 
regulation, but existing conventions are ad-hoc and arbitrary.

Comprehensive identification of cell cycle-regulated genes of 
the yeast Saccharomyces cerevisiae by microarray 
hybridization. P. T. Spellman et al. (1998)

The cell cycle patterns can be estimated from gene 
expression data.

Singular value decomposition for genome-wide expression 
data processing and modeling by O. Alter et al. (2000)



SVD/PCA of the yeast cell cycle data

Alter et al 2000



Apply the jackstraw test on the top 2 PCs
The Top Two Principal Components

Percent Variance Explained

2998 Genes at FDR < .1



Application in population genomics
Geographical or self-report ancestry labels are 
ad-hoc, arbitrary, and sometimes misleading.
Lewontin (1972)

Population structures are estimated from SNPs.
Patterson et al. (2006), Novembre & Stephens 
(2008), Hao et al. (2013)

Use the jackstraw to identify SNPs (or genetic 
elements) that are associated with that estimated 
population structure.
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Population Structure in SNPs
Logistic Factor Analysis (Hao et al. 2013)



Jackstraw for LFA

Enables statistical testing of
 association between genetical
 population structure and SNPs Y*
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Human Genome Diversity Project

← Population structures 
are estimated with logistic 
factors.

Do association tests (e.g., 
differentiation) using the 
jackstraw



Human Genome Diversity Project (HGDP)
m = 431345 SNPs for n = 940 individuals

Thousand Genome Project (TGP)
m = 339100 SNPs for n = 1500 

individuals

π0 = 9.02 × 10−4π0 = 6.95 × 10−5

P-values of Differentiation (14 LFs) P-values of Differentiation (6 LFs)

HGDP Data from Cann et al. (2002) and Rosenberg et al. (2002)
TGP Data from The 1000 Genomes Project Consortium (2012)

Pervasive and weak genetic differentiation 



Jaws PNV for HGDP

Median = 0.0797 Median = 0.0701

Jaws PNV for TGP

McFadden pseudo R2 McFadden pseudo R2 

Pseudo R-squared measures for Population Structure



SNP ID rs2836463 in HGDP

SNP with Median Differentiation



Jackstraw for clustering

Unsupervised clustering provides “clusters” of 
data that are substantially distinct.

It can be seen in the context of latent variable 
models, with categorical latent variables

How can we evaluate whether an individual 
member is correctly assigned to its cluster

* in practice, already use silhouette analysis, gap statistics, 
or other methods to find optimal clustering

Chung (2020)



Two distinct latent groups. But as a greater level of 
noise is introduced, they do not get separated easily



Consider that m variables form K subpopulations.
For k=1,…,K , a mutually exclusive subset of cells (mk out of m) are assigned to kth cluster.
Samples within the kth cluster summarized by their center (or other representative) ck(Y) for k=1,…K .
Consider there exist unobserved centers lk and coefficients bk for k=1,…,K . Then, the data are modeled as:

Y = BL + E

The spike-and-slab model for introduces zero-one latent variable γk with initial inclusion probabilities. 

bk = γkβk
γi,k is 1 if an ith sample is associated with lk. Otherwise, 0. 
βk may take on a continuous distribution, quantifying the relationship between  L and Y. 

e.g.



Application in proteomics

Molecular signatures in hypertrophy is hypothesized to 
exist. Related to clinical significance for heart 
remodeling and cardiovascular diseases  

We are studying its manifestation on cysteine oxidative 
post-translational modifications (O-PTM) of proteomes

After clustering O-PTM signatures, how can we 
evaluate their memberships?

Wikipedia

Mass spectrometry protocol 



The temporal changes of cysteine O-PTMs across the 
myocardial proteome were captured over time using a 
mouse model of cardiac hypertrophy

Data analysis pipeline



1426 O-PTMs with 
PIP > 80%

1605 O-PTMs



Protein O-PTMs of temporal significance were further annotated by their temporal patterns (as shown in five clusters) and their 
biological functions (BFs as shown in 10 essential pathways). Each circle represents a cluster of O-PTMs sharing both the temporal 
pattern and BF attribute. The occurrences of O-PTMs (a radius of a circle), the false discovery rate (*, FDR < 0.05), and the number of 
proteins (n) are labelled for each O-PTM cluster.

BF1, neutrophil degranulation
BF2, response to elevated platelet cytosolic Ca2+
BF3, extracellular matrix organization;
BF4, protein translation
BF5, post-translational protein phosphorylation;
BF6, glucose metabolism;
BF7, pyruvate metabolism and citric acid (TCA) cycle
BF 8, respiratory electron transport;
BF9, branched-chain amino acid (BCAA) catabolism
BF10, fatty acid metabolism.


