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Inference vs. Prediction

There are, generally speaking, two sides of data analysis (or data science).
Statisticians care more about inference

to learn about the data generating process.
Machine learning focuses more on prediction

to predict the outcomes of the new data.

Our modeling choices depends on our goals



Inference

Sampling
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Inference

e “Data Modeling Culture” by Leo Breiman

e Extract information from the data about the underlying mechanism producing the data.

e Inferring the important characteristics of the population relies on accurate and robust models,
estimation methods, and interpretations.

e Modelinterpretability is the most critical for accurate inference.

e E.g., Generalized linear models (linear or logistic regression), generalized additive model



Inference

1.

Modeling: Reason about the data generation process and
choose the stochastic model that approximates the data
generation process best.

Model validation: Evaluate the validity of the stochastic
model using residual analysis or goodness-of-fit tests.
Inference: Use the stochastic model to understand the

data generation process.



Prediction

@

Training set Predictive Model

e “Algorithmic Modeling Culture” by Leo Breiman

e Predictive models are created solely based on their performance in predicting the
testing set (not in the training set). Thus, it does not need to understand or elucidate
the actual data generation process.

e Interpretability isn’t a focus, although it often becomes important.

e E.g., support vector machines, decision trees, neural networks, random forests



Prediction

1.

Modeling: Consider several different models and different
parameter settings.

Model selection: Identify the model with the greatest
predictive performance using validation/test sets; select
the model with the highest performance on the test set.
Prediction: Apply the selected model on new data with
the expectation that the selected model also generalizes

to the unseen data.



Statistical Modeling: The Two Cultures

1.  Rashomon: the multiplicity of good models
a. Small perturbation to the data may result in different good models.
b. Different subset of features could be selected with similar performances.

2. Occam’s Razor: the conflict between simplicity and accuracy

a. The simple models are often more robust or generalizable
b. The complicated models (e.g., neural nets) would provide higher accuracy (LMs)

3. Richard Bellman: dimensionality - curse or blessing?
a. “The curse of dimensionality” advises us to reduce the features
b. We can leverage weak predictors in many features to obtain a strong predictor

— “The goal is not interpretability, but accurate information.”

Leo Breiman (2001)



Data Generation Process
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Data Modeling / Inference

linear regression
logistic regression
Cox model
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Medical doctors care about interpretability,
even if an algorithm may provide a higher
accuracy.

Genetics researchers may focus only on
inference as the goal is to understand the
mechanisms.

Algorithmic Modeling / Prediction

y +———— unknown -« X

K’ decision trees ‘/

neural nets

Algorithms for image classification and
localization do not need to have
interpretability.

The “unknown” nature may be too complex to
make reasonably simple models.

Leo Breiman (2001)



Prediction and Inference, in practice

Research at the intersection of those two cultures, since Breiman’s 2001 paper.
Some methods are used in both ways -- e.g., a logistic regression

The ultimate goal is to bridge this gap from either side.

In machine learning, interpretability is one of the most important topics currently.
In statistical learning, sensitivity and specificity mirrors that in prediction.

Feature selection can be seen in both cultures, with an increasing importance



Feature selection in the context

[ Curse of Dimensionality ]
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Mirza et al. 2019



Feature selection

With a large dataset with many features, we want to carry out feature selection:

« Occam’s Razor

« Training or converging faster

« Reduces the complexity of a model.

. Easiertointerpret and to generalize.

. Potentially improves the performance / accuracy of a model
. Preventoverfitting,.



Filter methods

Filter methods are used to select a subset of relevant features independent of any
model, oftening as a preprocessing step.

Selected simply on their statistics or metrics with respect to the outcome variable.

Many of the filter methods are univariate and often dont consider co-linearity

Set of all ' Selecting the Learning
Features Best Subset # Algorithm # Performance

Mirza et al. 2019;
http://analyticsvidhya.com



Wrapper methods

Search for the best feature combination by training a particular predictive model
repeatedly

Keep the best or worst performing subsets

Boruta with random forests; and Jackstraw with latent variables

Selecting the Best Subset

¥

Set of all ' Generate a Learning
Features Subset Algorithm

) S

e=m=l) Performance

Mirza et al. 2019;
http://analyticsvidhya.com



Embedded methods

The algorithms with built-in feature selection methods such that they perform feature
selection as a step toward predictive model building.

Embedded methods are in between filter and wrapper methods in terms of
computational complexity.

E.g., Lasso, elastic net, penalized matrix decompositions
Selecting the best subset

Set of all ' Generate the ’ Learning A!gorithm +
Subset

Performance

Features

Mirza et al. 2019;
http://analyticsvidhya.com



Linear Model

Consider m variables of n observations
As a convention, we are stacking vectors (y, y, ...y _) as rows into a m x n matrix Y:

Y=BX+E
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Linear Model

Consider m variables of n observations
As a convention, we are stacking vectors (y, y, ...y _) as rows into a m x n matrix Y:

Y=BX+E

Known and measured

A linear model is an example of supervised learning

Estimation and significance testing on b. help us identify y. that are associated with X



Supervised vs. unsupervised learning

Microarray, RNA-seq, and others
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When independent (e.g., biological) variables
are known, we conduct supervised learning.

With unknown independent variables,
use unsupervised learning



Jackknife

Resample 1

% Distribution of n known samples

Sample size n
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Schematic of Jackknife Resampling
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Given a sample of size n, a jackknife estimator can be built by aggregating the parameter estimates
from each subsample of size (n — 1) obtained by omitting one observation.

Efron (1982), Wikipedia



BOOtStrap: random sampling with replacement

draw with compute <
replacement [, - statistic x - =
S < 1 &)

.o : L] g . = ..= a 8 ﬁ'!
. e random : 3 o
ol .02t g

Do s 2 sample / ol \ v
« ° bt o: .. —_— ‘:‘:’_‘. o ; N
L] LWL o
] T [ ___—% £°
™ o ® o & o '4(.:_5
* P g —
st T e = original sample .2 T =
. * o T - O
. = 59 . . %
e
. “*% e o
population . o-
:
resamples X

The basic idea of bootstrapping is that inference about a population from sample data (sample — population) can be modeled
by resampling the sample data and performing inference about a sample from resampled data (resampled — sample).

As the population is unknown, the true error in a sample statistic against its population value is unknown. In
bootstrap-resamples, the 'population’ is in fact the sample, and this is known; hence the quality of inference of the 'true' sample
from resampled data (resampled — sample) is measurable.

Efron (1979), Wikipedia



BOOtStra p further variations

Parametric bootstrap:
Fit a parametric model and sampling from the fitted model

Smooth bootstrap:
Add random noise to each resampled observations. i.e., sampling from a kernel
density estimate of the data

Resampling residual in regression

1. Fit the model and retain the fitted values &/, and the residuals €; = y; — ¥,, (1 = 1,...,n).
2. For each pair, (x; y;), in which x; is the (possibly multivariate) explanatory variable, add a randomly
resampled residual, 's\j, to the fitted value ;- In other words, create synthetic response variables
Y, = v, + gj where j is selected randomly from the list (1, ..., n) for every i.
3. Refit the model using the fictitious response variables y;, and retain the quantities of interest (often the
Ak . = *
parameters, L, , estimated from the synthetic y;).

4. Repeat steps 2 and 3 a large number of times.
Efron (1979), Wikipedia



Latent Variable Model

Statistical & principled model for unsupervised learning

Y=BL+E

-

m variables

Yi bi

n samples




Latent variable as a conditional expectation

Expected influence of zon Y by E[Y|z],
Y=E[Y|z] + E

Estimate L(z), that is a row basis for E[Y|z]
This low dimensional L(z) is manifestation of the latent variables in the data.

When clear in context, we simply write L. Most of time, z is not knowable.



General latent variable models

Y=BL+E
L is estimate by the top r PCs (or related quantities), which we call VTr resulting in
Y=TV' +E

E’ denotes that it’s an error term but distinct from the original E



Manifestation of latent variables

Variables (e.g., genes)

Clinical Classification of
Multiple Organ Failure

Genetic Response to
Blunt Force Trauma

}

Manifestation of Post-trauma
Inflammatory Responses

Gene Expression Profiles of
Post-trauma Patients

Samples (e.g., patients)

External
Variables

V4

L(z)

Variables (e.g., genes)

Monotonic Time Points

Yeast Cell Cycle Regulation

!

Manifestation of Periodic Cell
Cycle on Gene Expression

Gene Expression Profiles
of the Cell Cycle Experiment

Samples (e.g., yeast samples)




Molecular sighatures ~ latent variables

In a right context, latent variables may contains molecular information about the
experiments, environments, or diseases.

Even when some information is captured by labels (e.g., potential candidates for
independent variables), they may not be accurate or precise.

In absence of independent variables, we would like to conduct significance testing with
respect to latent variables (analogous to one in a linear model)



General latent variable models

Y=BL+E
=TV' +F’
e Directly using VTrisn’t testing the association between Y and L.

e V' dependsony.
e The association betweenY and VTrare likely to be significant



Association tests betweenY and L

Goal: which observed variables (e.g., genes) are statistically significantly related to the
latent variables?

Solution: use the latent variable estimates (e.g., PCs) in association tests, while
accounting for the fact that the latent variable estimates depend on the data



Jackstraw procedures

Decompose s Model Y s m association E Calculate p-values from i
Y =UDVT Y=TVT+E’ statistics | i

A T

Decompose : Model s variables s null association
Y =UDVT Y.=FV,T+FE statistics
Data : Permutg s randomly chf)sen
Y n variables to form Y )
\_

Chung and Storey (2015)



Jackstraw s=1

n samples

Y Y*

Original data Jackstraw data

m genes




Simulation study

Y=BL+E

Simulating a case vs. control gene expression study, where 5% of genes are associated with L
Number of variables m = 1000

Number of observation n =20

Proportion of null variables = .95

Latent variable function form L ~ dichotomous shift

Non-null coefficients ~.. , Uniform(0,1)



ILlustrated example

Y=BL+E
=TV +E

Simulate a data Y from where B, L, E that are generated following certain distributions
Compare two approaches, by looking at p-values associated with null variables (null p-values)

1. Naive association testing (e.g., conventional linear model) between Y and VTr
2. Correct association testing (e.g., the jackstraw) between Y and L



Null p-values evaluation

Evaluate statistical tests by looking at p-values associated with null variables (null p-values)

1. Conventional F-test 2. Proposed Method

Density

0.25 0.50 0.75

| 1
1.00 0.00
Null P-values

Red dashed lines indicates a theoretically correct distribution
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To be sure, try d

use a Kolmogorov-Smirnov (KS) test for uniformity
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Application in gene expression study .

The cell cycle patterns are needed to identify genes under

requlation, but existing conventions are ad-hoc and arbitrary.

Comprehensive identification of cell cycle-regulated genes of
the yeast Saccharomyces cerevisiae by microarray

hybridization. P. T. Spellman et al. (1998)

The cell cycle patterns can be estimated from gene

expression data.

Singular value decomposition for genome-wide expression
data processing and modeling by O. Alter et al. (2000)
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(A) Gene expression patterns for cell cycle-regulated genes. The 800 genes
are ordered by the times at which they reach peak expression.



SVD/PCA of the yeast cell cycle data

(b) Eigenexpression Fraction

(c) Arrays

(a) Arrays
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Apply the jackstraw test on the top 2 PCs

2998 Genes at FDR < .1

The Top Two Principal Components
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Application in population genomics

Geographical or self-report ancestry labels are
ad-hoc, arbitrary, and sometimes misleading.
Lewontin (1972)

Population structures are estimated from SNPs.
Patterson et al. (2006), Novembre & Stephens

“non-genetic” A(z) -
/ (2008), Hao et al. (2013)
Use the jackstraw to identify SNPs (or genetic

elements) that are associated with that estimated
population structure.




Population Structure in SNPs
Logistic Factor Analysis (Hao et al. 2013)

n individuals n individuals ad n
-
“Logistic Factors”

f is an allele frequency
for i" SNP and j" individual

m SNPs
m SNPs
m SNPs




n individuals

Jackstraw for LFA

m SNPs

Enables statistical testing of
association between genetical
population structure and SNPs

Permute s rows

»
-

Deviances

Deviances

Compare to get p-values




Human Genome Diversity Project
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differentiation) using the
jackstraw



Pervasive and weak genetic differentiation

Human Genome Diversity Project (HGDP) Thousand Genome Project (TGP)
m = 431345 SNPs for n = 940 individuals m = 339100 SNPs for n = 1500
individuals
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Pseudo R-squared measures for Population Structure

Jaws PNV for HGDP Jaws PNV for TGP
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SNP with Median Differentiation
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SNP ID rs2836463 in HGDP



Jackstraw for clustering

Observed Data Clustered Data Labels
Unsupervised clustering provides “clusters” of
YA A data that are substantially distinct.
Y Sluetoing | —  ltcan beseenin the context of latent variable
o varaios) no models, with categorical latent variables
Y* B
Y, How can we evaluate whether an individual
r H member is correctly assigned to its cluster

Is a i*" data point (y) correctly asssigned to its cluster? . . ) ) L.
in practice, already use silhouette analysis, gap statistics,

or other methods to find optimal clustering

Chung (2020)



(a) Noise ~ Normal(0,5) (b) Noise ~ Normal(0,10) (c) Noise ~ Normal(0,15)
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Two distinct latent groups. But as a greater level of
noise is introduced, they do not get separated easily



Consider that m variables form K subpopulations.
For k=1,...,K, a mutually exclusive subset of cells (m, out of m) are assigned to kth cluster.
Samples within the kth cluster summarized by their center (or other representative) ¢, (Y) for k=1,..K.

Consider there exist unobserved centers 1, and coefficients b, for k=1,...,K. Then, the data are modeled as:

Y=BL+E

The spike-and-slab model for introduces zero-one latent variable y, with initial inclusion probabilities.

b, = nhy
7, 18 1if an ith sample is associated with 1,. Otherwise, .
p, may take on a continuous distribution, quantifying the relationship between Land Y.

€.8.  Prior for beta with spike and slab

0.5

0.0 e R = = -




Application in proteomics

Molecular signatures in hypertrophy is hypothesized to
exist. Related to clinical significance for heart
remodeling and cardiovascular diseases

We are studying its manifestation on cysteine oxidative
post-translational modifications (O-PTM) of proteomes

After clustering O-PTM signatures, how can we
evaluate their memberships?

relative abundance (%)

Mass spectrometry protocol
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The temporal changes of cysteine O-PTMs across the
myocardial proteome were captured over time using a
mouse model of cardiac hypertrophy
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BF1, neutrophil degranulation

BF2, response to elevated platelet cytosolic Ca2+
BF3, extracellular matrix organization;

BF4, protein translation

BF5, post-translational protein phosphorylation;
BF6, glucose metabolism;

BF7, pyruvate metabolism and citric acid (TCA) cycle
BF 8, respiratory electron transport;

BF9, branched-chain amino acid (BCAA) catabolism
BF10, fatty acid metabolism.
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Radius of circle: occurance of O-PTMs; (%, n): significant FDR<0.05 and number of proteins.

Protein O-PTMs of temporal significance were further annotated by their temporal patterns (as shown in five clusters) and their
biological functions (BFs as shown in 10 essential pathways). Each circle represents a cluster of O-PTMs sharing both the temporal
pattern and BF attribute. The occurrences of O-PTMs (a radius of a circle), the false discovery rate (*, FDR < 0.05), and the number of
proteins (n) are labelled for each O-PTM cluster.




