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Heterogeneity in blood cells

e /Zheng et al (2017) Nature Communications studies immune populations in peripheral
blood mononuclear cells (PBMCs)

e Fresh PBMCs from a healthy donor (Donor A).

e 8-9k cells were captured from each of 8 channels and pooled to obtain ~68k cells.

e At ~20k reads per cell, the median number of genes and UMI counts detected per cell

was ~525 and 1,300, respectively.



Dimension reduction and clustering

PCA on the top 1,000 variable genes ranked by their normalized

dispersion

K-means clustering on the first 50 PCs identified 10 distinct cell clusters
t-SNE (2D projection) are created based on the first 50 PCs

Distribution of number of genes
(left) and UMI counts (right)
detected per 68k PBMCs.
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tSNE projection of 68k PBMCs,
where each cell is grouped into
one of the 10 clusters

tSNE projection of 68k PBMCs, with
each cell coloured based on their
correlation-based assignment to a
purified subpopulation of PBMCs.

#o. CD19
-
CD4+/CD25+ Reg T i
CD4+/CD45RO+ momory'; ) ook
A .,Eyto(o)ucT
.3% ol
P 6% ey : endritic
. w " .
b2 g Btoats 7. . z e &
' 2 RN # R @ : . e
F e o . 3\ o - .
; (3.172%) £ \ 5 '\%K,— % ; ‘. '%f
y . % 4 e e B8y
(5.7%) CD44/CD25 R-agT o C%s,(s’ CD14+
AR 8 CD44 cms RA+ ///7 B Monocytes
(11.2%5) (0.3%) CD25- Naive T s, T : M N
CDB4/CD45 RAs : agakanyccyies
Naive cytotoxic 008 /CD45 RAS
ve cytotoxic
tSNE1 tSNE1

Zheng et al (2017) Nature Comm



Looking at cell types in a single experiment

>80% T cells (enrichment of CD3D, part of the T-cell receptor complex, in

clusters 1-3 and 6)

~6% NK cells (enrichment of NKG7 in cluster 5)
~6% B cells (enrichment of CD79A in cluster 7)

~7% myeloid cells (enrichment of STO00A8 and S7T00A9 in cluster 9

Distribution of number of genes
(left) and UMI counts (right)
detected per 68k PBMCs.
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Minor subpopulations or subsubpopulations

Unsupervised clustering is very challenging

The cells are developed in a branch process

Cellular subpopulations may be in a hierarchy

One may apply an algorithm to a large or a suspicious cluster
Of course, there are hierarchical clustering and others that are
computationally more expensive

E.g., substructures were observed in CD34+ and CD14+ monocyte samples
E.g., part of the inferred CD4+ naive T population was classified as CD8+ T
cells.



Quallty control: count depth per cell

A 3000+
Histograms of count depth per cell. 2500 :12
The smaller histogram is zoomed-in 3 . 123:
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Quality control: number of genes detected per cell

B
Histogram of the number of genes 800+
detected per cell. 700
A small noise peak is visible at f: 500
approx. 400 genes. These cells are g 4004
filtered out using the depicted 300
threshold (red line) at 700 genes. 200
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Quality control.: # genes discovered get saturated
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Quality control: count depth

Count depth distribution from high to
low count depths.

This visualization is related to the
log—log plot shown in Cell Ranger
outputs that is used to filter out
empty droplets. It shows an “elbow”
where count depths start to decrease
rapidly around 1,500 counts.
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Quallty control: number of genes versus the count depth

Number of genes versus the count
depth coloured by the fraction of
mitochondrial reads.

Mitochondrial read fractions are only
high in particularly low count cells
with few detected genes. These cells
are filtered out by our count and
gene number thresholds.
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Batch effects, prevalent in scRAN-seq

No batch correction Batch correction




Batch effects: weve been here before

Simulate two scenarios of batch effects: 1: matched batches, 2: independent
batches and Consider: # of cells, purity of groups
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scRNA-seq differential expression analysis accounting for the batch effects
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Batch as seudo bulk
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Evaluation criteria: FDR, statistical power,

F,-score, AUC of the Precision-recall curve
‘ Chen et al. 2020

10.1016/j.csbj.2020.03.026
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the DE model

Comparison summary & recommendations


https://doi.org/10.1016/j.csbj.2020.03.026

Batch effects: weve been here before

Chen et al. 2020
A comparison of methods accounting for batch effects in differential expression
analysis of UMI count based single cell RNA sequencing

Evaluated 11 methods and recommendations for scRNA-seq DE analysis:
1) incorporate known batch variables instead of using batch-corrected data;
2) employ SVA for latent batch correction.

Chen et al. 2020
10.1016/j.csbj.2020.03.026



https://doi.org/10.1016/j.csbj.2020.03.026

Feature Selection: variability

1. Keep only genes that are “informative” of the
variability inthedata. e

Technology type

®  Microfluidics chip

Number of HVGs

2. Typically between 1,000 and 5,000 highly
variable genes (HVGs) are selected for
downstream analysis
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Feature Selection: caveats

There are many different ways to measure variability

Downstream analysis may or may not be robust to the exact choice of the
number of HVGs. Err on the side of higher numbers of HVGs.

HVGs should be selected after technical data correction to avoid selecting
genes that are highly variable only due to batch effects.

Always check plots (volcano, histograms, heatmaps etc) before and after

Luecken & Theis (2019) MSB



Feature Selection: normailized dispersion by Zheng et al.

.get_variable_gene<-function(m) {

df<-data. frame(mean=colMeans(m),cv=apply(m,2,sd)/colMeans(m),var=apply(m,2,var))
df$dispersion<-with(df,var/mean) Dispersion = Variance/mean
df$mean_bin<-with(df, cut(mean,breaks=c(-Inf,quantile(mean,seq(0.1,1,0.05)),Inf)))

var_by_bin<-ddply(df,"mean_bin", function(x) {

20 bins based on their mean expression

data.frame(bin_median=median(x$dispersion),
bin_mad=mad(x$dispersion))

1) B . _ . . . .

in_Median = median dispersion per bin

df$bin_disp_median<-var_by_bin$bin_median[match(df$mean_bin,var_by bin$mean_bin)] — ed a ed a d Spe SIo pe b

df$bin_disp_mad<-var_by_bin$bin_mad[match(df$mean_bin,var_by_bin$mean_bin)]

df$dispersion_norm<-with(df,abs(dispersion-bin_disp_median)/bin_disp_mad) Bin Mad = median absolute deviation per bin
df -

Normalized dispersion = |Dispersion - Bin_Median| / Bin_Mad.



Feature Selection: normailized dispersion by Zheng et al.

o

Top varabie genes
Rest of detected
genes

10

i

Disperson

R

Median Genes Par Call
&
Meadian L= Par Call
=

g

5000 10000 15000 20000 S000 10000 15000 20000 e 1 1
Raw Reads Per Cell Raw Reads Per Cell Mean of UMI| Counts Per Gene

Supplementary Fig 5. Zheng et al.



Dimension reduction

Mouse intestinal epithelium regions data from Haber et al (2017)
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https://www.embopress.org/doi/10.15252/msb.20188746#msb188746-bib-0046
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U MAP: Uniform Manifold Approximation and Projection

: Density-oblivious visualization
Nearest neighbors
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Density-augmented
embedding

Density-preserving visualization
(den-SNE/densMAP)

(1) k-nearest neighbor (KNN) graph is a compact summary of the data manifold
(2) Optimize the visualization coordinates of the points to maximally preserve local distances between neighbors in the graph
(3) A general, differentiable measure of density called the local radius on the KNN graphs that t-SNE and UMAP leverage
(4) By augmenting the original visualization objective with an additional term that encourages local radii to be consistent

between the original space and the visualization, we transform both t-SNE and UMAP into density-preserving counterparts,
den-SNE and densMAP

Ashwin Narayan, Bonnie Berger & Hyunghoon Cho. Nature Biotechnology (2021)
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Major Challenges in scRNA-seq

1. Single droplet (or a wall) might contain two or more single cells.
Known as doublets or multiplets, they may induce biologically
irrelevant gene expression profiles in scRNA-seq studies.

2. Experiments that are done from different experimental and
environmental conditions need to be integrated

3. Many cells are sequenced individually, without knowing which gene
expression profiles correspond to (known and unknown) cell
identities

4. Since cell identities are unknown externally, a run/lane of
sequencing must be done on one “type” of cells



Solutions

Clustering is used to determine cell identities

Doublet/multiplet detection algorithms

Evaluation of clustering-based cellular identities

Identification of cellular subpopulations across multiple data sets
Multiplexing with barcoded antibodies or natural genetic variation
Estimation of cellular trajectories or developmental stages

S A o



Clusters ~ cellular populations

Enterocytes i '

PBMCs from Zheng et al (2018) Intestinal epithelium from Haber et al (2017)



Clustering algorithms

K means clustering (Macosko et al., 2015; Zheng et al., 2017)
K nearest neighbors in Seurat (Satija et al., 2015)
Hierarchical clustering in SINCERA (Guo et al., 2015)

Density peak clustering in Monocle (Qiu et al., 2017)

Algorithms for scRNA-seq data (Zeisel et al., 2015; Xu and Su, 2015; Buettner et al., 2015;
Wang et al., 2017).

Consensus (ensemble) algorithms (Kiselev et al., 2017; Yang et al., 2018).



Evaluation of cell identities

Input Data

scRNA-seq

QC and Normalization

Seurat, Monocle

Dimension Reduction

PCA, Variable Genes

Classification
of Single Cells

Unsupervised
Evaluation

K-means, MBKM, PAM

Feature Selection
& Visualization

Jackstraw for Clustering

t-SNE, UMAP

i

m cells assigned to
K subpopulations

\_/’_

P-values and PIPs for
m samples (e.g., cells)

\/

Relevant cells,
Canonical clusters,
improved visualization
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Be aware of circular analysis

Observed Data Clustered Data Labels
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Testing whether a cell y, is correctly assigned to its cellular subpopulation



Algorithm 1 Jackstraw Test for Cluster Membership

1. Apply the clustering algorithm to the observed data Y, resulting in

cluster centers ¢, for k = 1, ..., K and membership assignments b; g for
1=1,...mand K =1, ...,k
2. Compute the observed statistics F7, ..., F},, where the full models

include corresponding cluster centers cg (Y)

3. Create s synthetic null samples by resampling with replacement a small
proportion of samples s < m, resulting in a jackstraw data Y*, with
m — s observed samples and s synthetic null samples

4. Apply the clustering algorithm to the jackstraw data Y™, resulting in
cluster centers ¢; (Y*) and membership assignments b; 5

5. Compute the null statistics F7", ..., Iy, where the full models include
corresponding cluster centers ¢; (Y*)

6. Repeat the above three steps b = 1, ..., B times to obtain a total s x B
of null statistics

7. Compute the p-values by empirically ranking the observed statistics
among the null statistics




(a) Original center of 1000 variables (b) centers after resampling % of variables
| BRI

X

Impact of resampling a small proportion of variables on centroids

Original centers

Centers with 1% noise var.
Centers with 4% noise var.
Centers with 7% noise var.
Centers with 10% noise var.
Centers with 14% noise var.
Centers with 17% noise var.

Centers with 20% noise var.
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Feature selection in PBMC data using the jackstraw
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Doublet/multiplet detection

Several algorithms work similarly, by simulating doublets/multiplets :

1. DoubletDecon (DePasquale et al., 2018)
2. Scrublet (Wolock et al., 2019)
3. DoubletFinder (McGinnis et al., 2019)



DoubletFinder: Algorithm

1.

2.
3

o o

simulates artificial doublets from existing scRNA-seq data by averaging the
gene expression profiles of random pairs of cells

merges and pre-processes real and artificial data using the “Seurat”
performs dimensionality reduction on the merged real-artificial data using
PCA

detects the k nearest neighbors for every real cell in principal component
(PC) space

compute each cell’'s proportion of artificial nearest neighbors (pANN)
predicts doublets as cells with the top n pANN values, where n is set to the
total number of expected doublets

Required parameters: the number of expected real doublets, the number of
artificial doublets (pN) and the neighborhood size (pK) used to compute the
number of artificial nearest neighbors



DoubletFinder: pK and structure

DoubletFinder is sensitive to changes in the input parameter specifying pK.

In an simulation study creating 3—8 distinct cell clusters (ie, real doublets were simulated by adding
the gene expression profiles of randomly selected cells), calculate the mean AUC for each pK value
across all pN

— Mean AUC inflection point positions differed for simulations with variable numbers of cell states,
suggesting that pK parameter selection is sensitive to the inherent diversity of scRNA-seq data.
— mean AUC inflection points were only observed for simulations with well-separated clusters
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Inherent ambiguity of clusters

(a) Noise ~ Normal(0,5) (b) Noise ~ Normal(0,10) (c) Noise ~ Normal(0,15)
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Well-separated clusters will result in DoubletFinder to perform well



DoubletFinder and Jackstraw

(d) DoubletFinder (pK=0.005) 3% (e) DoubletFinder (pK=0.07) 3%
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