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Project proposal meeting - May 13
● Prepare 5 min presentation on your project idea

● Show and summarize the paper – which your project is based on
● Present the data – at minimum, load and reproduce some of the original analysis
● Describe how you are changing the data analysis 

a. The original paper did X, but I believe itʼs better to do Y
b. The original paper forgot to do X, therefore I will try X
c. The original paper used a method X. I can improve it by modifying it.
d. The original paper had a goal of understanding X (primary). I would like to understand Y (secondary).
e. I found 2 or more papers on the same topic. I will combine the data and do the same analysis.
f. Many more!

● Remember - you will need to write a final report (publication style) on this



Previous year’s examples
● Predicting the formation of chromatin loops using genomic data - search for the 

best model
● Polycystic ovary syndrome and obesity: gene expression in granulosa cells
● Gene Expression–Based Prediction of Neoadjuvant Chemotherapy Response in 

Early Breast Cancer
● Accounting for technical noise in scRNA-seq experiments: Identifying highly 

variable genes



Heterogeneity in blood cells
● Zheng et al (2017) Nature Communications studies immune populations in peripheral 

blood mononuclear cells (PBMCs)

● Fresh PBMCs from a healthy donor (Donor A).

● 8–9k cells were captured from each of 8 channels and pooled to obtain ∼68k cells.

● At ∼20k reads per cell, the median number of genes and UMI counts detected per cell 

was ∼525 and 1,300, respectively.



Dimension reduction and clustering

Zheng et al (2017) Nature Comm

Distribution of number of genes 
(left) and UMI counts (right) 
detected per 68k PBMCs.

tSNE projection of 68k PBMCs, 
where each cell is grouped into 
one of the 10 clusters

tSNE projection of 68k PBMCs, with 
each cell coloured based on their 
correlation-based assignment to a 
purified subpopulation of PBMCs.

● PCA on the top 1,000 variable genes ranked by their normalized 
dispersion

● K-means clustering on the first 50 PCs identified 10 distinct cell clusters
● t-SNE (2D projection) are created based on the first 50 PCs



Looking at cell types in a single experiment

Zheng et al (2017) Nature Comm

Distribution of number of genes 
(left) and UMI counts (right) 
detected per 68k PBMCs.

tSNE projection of 68k PBMCs, 
where each cell is grouped into 
one of the 10 clusters

tSNE projection of 68k PBMCs, with 
each cell coloured based on their 
correlation-based assignment to a 
purified subpopulation of PBMCs.

● >80% T cells (enrichment of CD3D, part of the T-cell receptor complex, in 
clusters 1–3 and 6)

● ∼6% NK cells (enrichment of NKG7 in cluster 5)
● ~6% B cells (enrichment of CD79A in cluster 7)
● ∼7% myeloid cells (enrichment of S100A8 and S100A9 in cluster 9



Minor subpopulations or subsubpopulations

● Unsupervised clustering is very challenging
● The cells are developed in a branch process
● Cellular subpopulations may be in a hierarchy
● One may apply an algorithm to a large or a suspicious cluster
● Of course, there are hierarchical clustering and others that are 

computationally more expensive

● E.g., substructures were observed in CD34+ and CD14+ monocyte samples
● E.g., part of the inferred CD4+ naive T population was classified as CD8+ T 

cells.



Quality control: count depth per cell

Histograms of count depth per cell.

The smaller histogram is zoomed‐in 
on count depths below 4,000. A 
threshold is applied here at 1,500 
based on the peak detected at 
around 1,200 counts.



Quality control: number of genes detected per cell

Histogram of the number of genes 
detected per cell.

A small noise peak is visible at 
approx. 400 genes. These cells are 
filtered out using the depicted 
threshold (red line) at 700 genes. 

Luecken & Theis (2019) MSB



Quality control: # genes discovered get saturated

Supplementary Fig 10. Zheng et al.



Quality control: Count depth

Count depth distribution from high to 
low count depths.

This visualization is related to the 
log–log plot shown in Cell Ranger 
outputs that is used to filter out 
empty droplets. It shows an “elbow” 
where count depths start to decrease 
rapidly around 1,500 counts.

Luecken & Theis (2019) MSB



Quality control: Number of genes versus the count depth

Number of genes versus the count 
depth coloured by the fraction of 
mitochondrial reads.

Mitochondrial read fractions are only 
high in particularly low count cells 
with few detected genes. These cells 
are filtered out by our count and 
gene number thresholds.

Luecken & Theis (2019) MSB



Batch effects, prevalent in scRAN-seq



Batch effects: we’ve been here before

Chen et al. 2020
10.1016/j.csbj.2020.03.026  

https://doi.org/10.1016/j.csbj.2020.03.026


Batch effects: we’ve been here before

Chen et al. 2020 
A comparison of methods accounting for batch effects in differential expression 
analysis of UMI count based single cell RNA sequencing

Evaluated 11 methods and recommendations for scRNA-seq DE analysis:
1) incorporate known batch variables instead of using batch-corrected data;
2) employ SVA for latent batch correction. 

Chen et al. 2020
10.1016/j.csbj.2020.03.026  

https://doi.org/10.1016/j.csbj.2020.03.026


Feature Selection: variability

1. Keep only genes that are “informative” of the 
variability in the data.

 

2. Typically between 1,000 and 5,000 highly 
variable genes (HVGs) are selected for 
downstream analysis 

Luecken & Theis (2019) MSB



Feature Selection: caveats

There are many different ways to measure variability

Downstream analysis may or may not be robust to the exact choice of the 
number of HVGs. Err on the side of higher numbers of HVGs. 

HVGs should be selected after technical data correction to avoid selecting 
genes that are highly variable only due to batch effects.

Always check plots (volcano, histograms, heatmaps etc) before and after

Luecken & Theis (2019) MSB



Feature Selection: Normalized dispersion by Zheng et al.

Dispersion = Variance/mean

20 bins based on their mean expression

Bin_Median = median dispersion per bin

Bin_Mad = median absolute deviation per bin

Normalized dispersion = |Dispersion - Bin_Median| / Bin_Mad.



Feature Selection: Normalized dispersion by Zheng et al.

Supplementary Fig 5. Zheng et al.



Dimension reduction
Mouse intestinal epithelium regions data from Haber et al (2017) 

PCA tSNE

https://www.embopress.org/doi/10.15252/msb.20188746#msb188746-bib-0046


Dimension reduction
PCA tSNE Diffusion maps

UMAP Force-directed 
graph

Variance explained by PCs



UMAP: Uniform Manifold Approximation and Projection 

(1) k-nearest neighbor (KNN) graph is a compact summary of the data manifold 
(2) Optimize the visualization coordinates of the points to maximally preserve local distances between neighbors in the graph 
(3) A general, differentiable measure of density called the local radius on the KNN graphs that t-SNE and UMAP leverage
(4) By augmenting the original visualization objective with an additional term that encourages local radii to be consistent 
between the original space and the visualization, we transform both t-SNE and UMAP into density-preserving counterparts, 
den-SNE and densMAP

Ashwin Narayan, Bonnie Berger & Hyunghoon Cho. Nature Biotechnology (2021)



Downstream analysis overview



Major Challenges in scRNA-seq
1. Single droplet (or a wall) might contain two or more single cells. 

Known as doublets or multiplets, they may induce biologically 
irrelevant gene expression profiles in scRNA-seq studies.

2. Experiments that are done from different experimental and 
environmental conditions need to be integrated

3. Many cells are sequenced individually, without knowing which gene 
expression profiles correspond to (known and unknown) cell 
identities

4. Since cell identities are unknown externally, a run/lane of 
sequencing must be done on one “type” of cells



Solutions

1. Clustering is used to determine cell identities
2. Doublet/multiplet detection algorithms
3. Evaluation of clustering-based cellular identities
4. Identification of cellular subpopulations across multiple data sets
5. Multiplexing with barcoded antibodies or natural genetic variation
6. Estimation of cellular trajectories or developmental stages 



Clusters ~ cellular populations

PBMCs from Zheng et al (2018) Intestinal epithelium from Haber et al (2017)



Clustering algorithms

K means clustering (Macosko et al., 2015; Zheng et al., 2017)

K nearest neighbors in Seurat (Satija et al., 2015)

Hierarchical clustering in SINCERA (Guo et al., 2015)

Density peak clustering in Monocle (Qiu et al., 2017)

Algorithms for scRNA-seq data (Zeisel et al., 2015; Xu and Su, 2015; Buettner et al., 2015; 
Wang et al., 2017). 

Consensus (ensemble) algorithms (Kiselev et al., 2017; Yang et al., 2018). 



Evaluation of cell identities



Be aware of circular analysis





Impact of resampling a small proportion of variables on centroids



Mixture of
Jurkat and
293T Cell Lines



Feature selection in PBMC data using the jackstraw



Doublet/multiplet detection
Several algorithms work similarly, by simulating doublets/multiplets  :

1. DoubletDecon (DePasquale et al., 2018)
2. Scrublet (Wolock et al., 2019)
3. DoubletFinder (McGinnis et al., 2019)



DoubletFinder: Algorithm
1. simulates artificial doublets from existing scRNA-seq data by averaging the 

gene expression profiles of random pairs of cells
2. merges and pre-processes real and artificial data using the “Seurat” 
3. performs dimensionality reduction on the merged real-artificial data using 

PCA
4. detects the k nearest neighbors for every real cell in principal component 

(PC) space
5. compute each cell’s proportion of artificial nearest neighbors (pANN)
6. predicts doublets as cells with the top n pANN values, where n is set to the 

total number of expected doublets

Required parameters: the number of expected real doublets, the number of 
artificial doublets (pN) and the neighborhood size (pK) used to compute the 
number of artificial nearest neighbors



DoubletFinder: pK and structure 
DoubletFinder is sensitive to changes in the input parameter specifying pK. 
In an simulation study creating 3–8 distinct cell clusters (ie, real doublets were simulated by adding 
the gene expression profiles of randomly selected cells), calculate the mean AUC for each pK value 
across all pN

→ Mean AUC inflection point positions differed for simulations with variable numbers of cell states, 
suggesting that pK parameter selection is sensitive to the inherent diversity of scRNA-seq data.
→ mean AUC inflection points were only observed for simulations with well-separated clusters



Inherent ambiguity of clusters

Well-separated clusters will result in DoubletFinder to perform well



DoubletFinder and Jackstraw


