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Why integrate single-cell RNA-seq Data?

1. How can disparate single-cell datasets be harmonized into a single 
reference?

2. Different technologies/platforms available for sequencing
3. Different environmental or experimental conditions 
4. How can its reference data improve the analysis of new experiments? 
5. Potential for the information present in one experiment to inform the 

interpretation of another

→ Bulter et al. (2018), Haghverdi et al., (2018), Stuart et al. (2019)



Challenges in integrating data from a case-control study

1. Cells are treated with two different agents (+Drug vs. -Drug)
2. These cells are sequenced en masse, where cell identities are unknown
3. Data are combined (naively) 
4. Cells are clustered both by cell types and drug treatments
5. How to control for cell types that are not labeled at single cell levels?

Four cell types are represented by different symbols, while drug treatment is encoded by color.



Improving interpretability of scRNA-seq

1. Integration using computational approaches
a. canonical correlation analysis (CCA)
b. dynamic time warping (DTW) 
c. mutual nearest neighbors (MNNs)

2. Multiplexing using experimental and computational approaches
a. Demuxlet - using natural genetic variations
b. Cell hashing - creating artificial genetic variations



Computational Approach with CCA (Bulter et al. 2018)

1. Identify the shared  gene  correlation  structure, conserved between the data 
sets using canonical correlation analysis (CCA)

2. Select/remove individual cells that cannot be well described by this shared 
structure

3. Align the data sets into a conserved low-dimensional space, using dynamic 
time warping (DTW) algorithms

Four cell types are clustered separately. Within each cell type, treatment effects are shown.



Canonical correlation analysis 
1. CCA aims to find linear combinations of features across data sets that are 

maximally correlated, identifying shared correlation structures across data 
sets

2. CCA has been used for multimodal genomic analysis from bulk samples, for 
example, identifying relationships between gene expression and DNA copy 
number measurements  based  on  the  same  set  of  samples

3. CCA treats the data sets as multiple measurements of a gene–gene 
covariance structure, and search for patterns that are common to the data 
sets.



(Classical) canonical correlation analysis 
Let Xg,c be a gene expression matrix of genes g1, g2, ..., gn by cells c1, c2, ..., cm 
      Yg,d be a gene expression matrix of the same genes g1, g2, ..., gn by cells d1, d2, ..., dp. 

maxu,v u
TXT Yv,  subject to uTXT Xu ≤ 1 and vTYT Yv ≤ 1

Essentially, we are analyzing the cross-covariance matrix given by:

However, the number of genes of interest that are shared between the two data sets is often 
much smaller than the total number of cells that were measured (n << m + p)



Diagonalized canonical correlation analysis 
However, the number of genes of interest that are shared between the two data sets is often 
much smaller than the total number of cells that were measured (n << m + p).

Consequently, the vectors u and v that are returned from CCA will not be unique.

Treat the covariance matrix within each data set as diagonal.

Substitute the identity matrix for XTX and YTY to arrive at

maxu,v u
TXT Yv,  subject to ǁuǁ2

2 ≤ 1 and ǁvǁ2
2 ≤ 1

Note that the constraints are changed slightly, which leads to more efficient computation.



Solving diagonalized canonical correlation analysis 
Note to standardize columns (samples) of X and Y to have a mean of 0 and variance of 1.

Then, apply singular value decomposition (SVD) on a cross-covariance matrix of X and Y:

KXY = XTY 

KXY = ΓΛ∆T

where Γ =(γ1,...,γk);  ∆ =(δ1,...,δk);  Λ =(λ1,...,λk)

Canonical correlation vectors u and v are simply the left and right singular vectors from the 
SVD:

ui= γi        and    vi =  λi



Dynamic Time Warping 
1. Represent each basis vector as a metagene, defined as a weighted expression average 

of the top genes whose expression exhibits robust correlation with the basis vector
2. Linearly transform the metagenes to match their 95% reference range, correcting for 

global differences in feature scale. 
3. Determine a mapping between the metagenes using dynamic time warping, which 

locally compresses or stretches the vectors

Two related processes occurring in 
slightly different time scales



Application on stimulated and resting PBMCs

14,039 human PBMCs from eight patients into two groups:
one stimulated with interferon-beta (IFN-β) 
another culture-matched control



Improved pipeline from Stuart et al. (2019)



CCA + MNN approach

1. Get normalized CCA
2. Get mutual nearest neighbors (MNNs) as anchors
3. Use MNNs to correct for batch effects



CCA + MNN approach
1. Jointly reduce the dimensionality of both datasets Y using diagonalized CCA
2. Apply L2-normalization to the canonical correlation vectors

E.g., Divide the vectors by a square root of a sum of squares
3. Search for mutual nearest neighbors (MNNs) in this shared low-dimensional 

representation (resulting cell pairs are called anchors)
4. Each anchor pair was assigned a score based on the shared overlap of 

mutual neighborhoods for the two cells in a pair
5. Calculate the anchor weight matrix W, the strength of association between 

each query cell c, and each anchor i. Based on the distance between the 
query cell and the anchor, and the previously computed anchor score

6. Batch correction by Y - BWT , where B is the difference between the two 
expression vectors for every pair of anchor cells



Mutual nearest neighbors from Haghverdi et al. (2018)
1. Identify the K-nearest neighbors (KNNs) for each cell within its paired dataset, based on 

the L2-normalized CCV
2. Identify mutual nearest neighbors (MNN), which are pairs of cells, with one from each 

dataset, that are contained within each other’s neighborhoods
3. Each anchor pair was assigned a score based on the shared overlap of mutual 

neighborhoods for the two cells in a pair



Anchor scoring
1. Goal: anchors identified in low-dimensional space are supported by original high-dimensional 

measurements.
a. Examine the nearest neighbors of each anchor query cell in the reference dataset.
b. If the anchor reference cell is found within the first k.filter (200) neighbors, then we 

retain this anchor.
c. Otherwise, we remove this anchor from further analyses. 

2. Goal: Minimize the influence of incorrectly identified anchors
a. For each reference anchor cell, we determine its k.score (30) nearest within-dataset 

neighbors and its k.score nearest neighbors in the query dataset.
b. Combine to form an overall neighborhood graph
c. Compute the shared neighbor overlap between the anchor and query cells, and assign 

this value as the anchor score
d. Use the 0.01 and 0.90 quantiles to rescale anchor scores to a range of 0 to 1



Experimental approach to help integration
1. Difficulty with figuring out unknown cell identities
2. Computational weakness in post-hoc or meta-analysis 
3. Better to prepare the eventual need for integration by 

experimental approach



Sample Multiplexing

Reliable identification of doublets and multiplets

Experimental approaches to sequence multiple 
conditions (e.g., case vs. control)

Easily and reliably distinguish the origins of multiple 
samples in a single run/lane

Note that this doesnʼt completely solve the problem 
of identifying (known and unknown) cell types 



Harnessing Genetic Variation Kang HM et al (2017) 

Useful when multiple samples are from different genetic backgrounds

Retaining the origins of those single cells through a statistical model

It requires pooled samples to originate from previously genotyped individuals



Demuxlet 

demuxlet enables the pooling of samples with distinct genotypes together into a 
single scRNA-seq experiment.

The sample-specific genetic polymorphisms serve as a fingerprint for the sample 
of origin and therefore can be used to assign each cell to an individual after 
sequencing

Maximum likelihood to determine the most likely donor for each cell using a 
mixture model



Cell Hashing from Stoeckius et al. (2018) 

Extending demuxlet by combining with oligonucleotide-tagged antibodies

Widely used in flow cytometry and mass-cytometry (CyTOF)

Oligonucleotide-tagged antibodies are used to convert the detection of cell surface 
proteins into a sequenceable readout alongside scRNA-seq

Based on the concept of hash functions in computer science to index datasets 
with specific features, a set of oligo-derived hashtags equally define a “lookup 
table” to assign each multiplexed cell to its original sample



Cell Hashing
1. Cells from different samples are incubated with DNA-barcoded antibodies 

recognizing ubiquitous cell surface proteins.
2. Distinct barcodes (referred to as hashtag-oligos, HTO) on the antibodies 

allow pooling of multiple samples into one scRNA-seq experiment.
3. After sequencing, cells can be assigned to their sample of origin based on 

HTO levels



Benchmark with PBMCs from 8 donors

1. Peripheral  blood  mononuclear  cells (PBMCs) from eight separate human 
donors (referred toas donors A through H)

2. Chose a set of monoclonal antibodies directed against ubiquitously and 
highly expressed immune surface markers (CD45,CD98, CD44, and 
CD11a)

3. Pooled all cells together in equal proportion, alongside an equal number of 
unstained HEK293T cells (and 3%mouse NIH-3T3 cells) as negative 
controls

4. The HTOs contain a unique 12-bp barcode that can be sequenced 
alongside the cellular transcriptome



HTO classification algorithm for Cell Hashing 
1. HTO raw counts were normalized using centered log ratio (CLR) 

transformation:

2. Perform k-medoids clustering of all HTO reads with K = 9.
a. 8 clusters enriched for expression of a particular HTO, while 9th cluster 

enriched for cells with low expression of all HTOs
3. For each of the eight HTOs, model the“background”:

a. identify the k-medoids cluster with the highest average HTO expression 
and excluded these cells

b. exclude the highest 0.5% values as potential outliers
c. fit a negative binomial distribution to the remaining HTO values
d. calculated the q= 0.99 quantile of the fitted distribution and thresholded 

each cell in the dataset based on this HTO-specific value



HTO classification algorithm for Cell Hashing 
4.  Barcodes that were positive for only one HTO were classified as singlets.
5.  Barcodes that were positive for >1 HTOs were classified as multiplets.
6.  Barcodes that were negative for all eight HTOs were classified as “negative.”



t-SNE projections from HTO and RNA
For HTO t-SNE (D), use euclidean distances calculated for tSNE
For RNA t-SNE (F), use the top 10 PCs of the 1000 most highly variable genes

In both, their computationally determined HTO classifications are shown.



Analyzing DNA-barcoded antibodies

Cell Hashing algorithm is a procedure.
How can we assign statistical significance and posterior probabilities to these?



Jackstraw P-values for cluster memberships in HTO data


