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Computational single-cell RNA-seq (scRNA-seq) methods have 
been successfully applied to experiments representing a single 
condition, technology, or species to discover and define cellular 
phenotypes. However, identifying subpopulations of cells that 
are present across multiple data sets remains challenging. 
Here, we introduce an analytical strategy for integrating 
scRNA-seq data sets based on common sources of variation, 
enabling the identification of shared populations across data 
sets and downstream comparative analysis. We apply this 
approach, implemented in our R toolkit Seurat (http://satijalab.
org/seurat/), to align scRNA-seq data sets of peripheral blood 
mononuclear cells under resting and stimulated conditions, 
hematopoietic progenitors sequenced using two profiling 
technologies, and pancreatic cell ‘atlases’ generated from 
human and mouse islets. In each case, we learn distinct or 
transitional cell states jointly across data sets, while boosting 
statistical power through integrated analysis. Our approach 
facilitates general comparisons of scRNA-seq data sets, 
potentially deepening our understanding of how distinct cell 
states respond to perturbation, disease, and evolution.

With recent improvements in cost and throughput1–3, and the avail-
ability of fully commercialized workflows4, high-throughput single-cell 
transcriptomics has become an accessible and powerful tool for unbi-
ased profiling of complex and heterogeneous systems. In concert with 
novel computational approaches, these data sets can be used for the 
discovery of cell types and states5,6, the reconstruction of developmen-
tal trajectories and fate decisions7,8, and to spatially model complex tis-
sues9,10. Indeed, scRNA-seq is poised to transform our understanding 
of developmental biology and gene regulation11–14, and enable system-
atic reconstruction of cellular taxonomies across the human body6,15, 
although substantial computational obstacles remain. In particular, 
integrated analysis of different scRNA-seq data sets, consisting of mul-
tiple transcriptomic subpopulations, either to compare heterogeneous 
tissues across different conditions or to integrate measurements pro-
duced by different technologies, remains challenging.

Many powerful methods address individual components of this 
problem. For example, zero-inflated differential expression tests have 

been tailored to scRNA-seq data to identify changes within a single-cell 
type16,17, and clustering approaches18–23 can detect proportional shifts 
across conditions if cell types are conserved. However, comparative 
analysis for scRNA-seq poses a unique challenge, as it is difficult to 
distinguish between changes in the proportional composition of cell 
types in a sample and expression changes within a given cell type, and 
simultaneous analysis of multiple data sets will confound these two 
disparate effects. Therefore, new methods are needed that can jointly 
analyze multiple data sets and facilitate comparative analysis down-
stream. Progress toward this goal is essential for translating the oncom-
ing wealth of single-cell sequencing data into biological insight. An 
integrated computational framework for joint learning between data 
sets would allow for robust and insightful comparisons of heterogene-
ous tissues in health and disease, integration of data from diverse tech-
nologies, and comparison of single-cell data from different species.

Here, we present a novel computational strategy for integrated 
analysis of scRNA-seq data sets, motivated by techniques in com-
puter vision designed for the alignment and integration of imaging 
data sets24,25. We demonstrate that multivariate methods designed for 
‘manifold alignment’26,27 can be successfully applied to scRNA-seq 
data to identify gene–gene correlation patterns that are conserved 
across data sets and can embed cells in a shared low-dimensional 
space. We identify and compare 13 aligned peripheral blood mono-
nuclear cell (PBMC) subpopulations under resting and interferon  
β (IFN-β)-stimulated conditions, align scRNA-seq data sets of com-
plex tissues produced across multiple technologies, and jointly dis-
cover shared cell types from droplet-based ‘atlases’ of human and 
mouse pancreatic tissue. These analyses pose distinct challenges for 
alignment, but in each case, we successfully integrate the data sets to 
obtain deeper biological insight than would be possible from inde-
pendent analysis. Our approach can be applied to data sets ranging 
from hundreds to tens of thousands of cells, is compatible with diverse 
profiling technologies, and is implemented as part of Seurat, an open-
source R toolkit for single-cell genomics.

RESULTS
Overview of Seurat alignment workflow
We aimed to develop a diverse integration strategy that could com-
pare scRNA-seq data sets across different conditions, technologies, 
or species. To be successful in diverse settings, this computational 
strategy must fulfill the following requirements, as illustrated with 
a toy example where heterogeneous scRNA-seq data sets are gener-
ated in the presence or absence of a drug (Fig. 1a). First, subpopula-
tions must be aligned even if each has a unique drug response. This 
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key challenge lies outside of the scope of batch correction methods 
developed for bulk assays, which assume that confounding variables 
have uniform effects on all cells in a data set. Second, the method 
must allow for changes in cellular density (shifts in subpopulation 
frequency) between conditions. Third, the method must be robust to 
changes in feature scale across conditions, allowing either global tran-
scriptional shifts, or differences in normalization strategies between 
data sets produced with different technologies. Lastly, the process 
should not be targeted toward defined cell subsets, with no require-
ment for pre-established sets of markers that can be used to match 
subpopulations.

The Seurat alignment workflow takes as input a list of at least 
two scRNA-seq data sets, and briefly consists of the following steps  
(Fig. 1b,c). (i) It learns a shared gene correlation structure that is 
conserved between the data sets using canonical correlation analysis 
(CCA) (Fig. 1b). (ii) As an optional step, it identifies individual cells 
that cannot be well described by this shared structure. This can help 
to identify rare populations that may be non-overlapping between 
the data sets and can therefore be flagged for further analysis. (iii) 
It aligns the data sets into a conserved low-dimensional space, using 
nonlinear ‘warping’ algorithms to normalize for differences in feature 

scale, in a manner that is robust to shifts in populations density. (iv) It 
proceeds with an integrated downstream analysis, for example, iden-
tifying discrete subpopulations through clustering, or reconstructing 
continuous developmental processes (Fig. 1c). (v) It performs com-
parative analysis on aligned subpopulations between the data sets, to 
identify changes in population density or gene expression (Fig. 1c). 
We describe these steps briefly below, and then apply and validate this 
strategy on five sets of scRNA-seq experiments from the literature.

Identifying shared correlation structures across data sets
Machine-learning techniques for ‘data fusion’ aim to integrate infor-
mation from multiple experiments into a consistent representation. 
For example, CCA aims to find linear combinations of features across 
data sets that are maximally correlated, identifying shared correlation 
structures across data sets28,29. CCA has been used for multimodal 
genomic analysis from bulk samples, for example, identifying rela-
tionships between gene expression and DNA copy number measure-
ments based on the same set of samples30. Here, in contrast to its 
traditional use in multimodal analysis31,32, we apply CCA to identify 
relationships between single cells from different data sets based on 
the same set of genes. Effectively, we treat the data sets as multiple 
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Figure 1 Overview of Seurat alignment of single-cell RNA-seq data sets. (a) Heterogeneous populations profiled in a case–control study after drug 
treatment. Four cell types are represented by different symbols, while drug treatment is encoded by color. In a standard workflow, cells often cluster 
both by cell type and drug treatment, creating challenges for downstream comparative analysis. (b) The Seurat alignment procedure uses canonical 
correlation analysis to identify shared correlation structures (i.e., canonical correlation vectors, CC) across data sets, and aligns these dimensions using 
dynamic time warping. After alignment, cells are embedded in a shared low-dimensional space (visualized here in 2D with t-SNE). (c) After alignment, 
a single integrated clustering can identify conserved cell types across conditions, allowing for comparative analysis to identify shifts in cell type 
proportion, as well as cell-type-specific transcriptional responses to drug treatment.
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measurements of a gene–gene covariance structure, and search for 
patterns that are common to the data sets. We use CCA for pairwise 
integration of two data sets, and extend this to multi-set CCA (multi-
CCA)33,34 for the integration of multiple data sets. In the description 
of all methods below, we refer only to CCA for simplicity, but note 
that each of the individual techniques can extend to multi-CCA when 
multiple data sets are included as input (Online Methods).

We employ a variant of CCA, diagonal CCA, to account for cases 
where there are more cells than genes and apply this using the single-
cell RNA-seq data sets as input30 (Online Methods). The procedure 
can consider any gene that is measured across all data sets, though 
we choose to focus only on genes that exhibit high single-cell vari-
ation in at least one data set (Online Methods). CCA identifies sets 
of canonical ‘basis’ vectors, embedding cells from each data set in a 
low-dimensional space, such that the variation along these vectors 
(gene-level projections) is highly correlated between data sets. We 
note that CCA is robust to affine transformations in the original data, 
and is unaffected by linear shifts in gene expression (e.g., due to dif-
ferent normalization strategies).

Aligning basis vectors from CCA
CCA returns vectors whose gene-level projections are correlated 
between data sets, but not necessarily aligned. While linear transforma-
tions may be required to correct for global shifts in feature scale or nor-
malization strategy, nonlinear shifts may also be needed to correct for 
shifts in population density. We therefore align the CCA basis vectors 
between the data sets, resulting in a single, integrated low-dimensional 
space. Briefly, we represent each basis vector as a metagene, defined as a 
weighted expression average of the top genes whose expression exhibits 
robust correlation with the basis vector (Online Methods). We first 
linearly transform the metagenes to match their 95% reference range 
(Online Methods), correcting for global differences in feature scale. 
Next, we determine a mapping between the metagenes using dynamic 
time warping, which locally compresses or stretches the vectors during 
alignment to correct for changes in population density35. We apply 
this procedure to each pair (or set, for multiple alignment) of basis 
vectors individually, defining a single, aligned, low-dimensional space 
representing all data sets. This enables us to perform integrated down-
stream analyses, including unbiased clustering and the reconstruction 
of developmental trajectories, as demonstrated below.

Comparative analysis of stimulated and resting PBMCs
We first demonstrate our alignment strategy on a data set containing 
many distinct cell types in the presence and absence of perturba-
tion. A recent study split 14,039 human PBMCs from eight patients 
into two groups: one stimulated with interferon-beta (IFN-β) and a 
culture-matched control36, and performed droplet-based single-cell  
RNA-seq. Since all cells contain machinery to respond to IFN-β, 
stimulation results in a drastic but highly cell-type-specific response. 
Consequently, a standard analysis of both data sets together yielded 
confusing results, as cells tend to cluster both by cell type but also by 
stimulation condition (Fig. 2a). As an alternative to unbiased cluster-
ing, a supervised strategy to assign cells to classes based on known 
markers resulted in a final set of eight clusters36.

In contrast, the Seurat alignment returned a set of canonical corre-
lation vectors that separated PBMC subsets irrespective of stimulation 
condition. We chose to include 20 vector pairs for downstream analysis 
(Online Methods), but results for this and all examples in the manu-
script were robust to the exact choice of this parameter (Supplementary 
Fig. 1). We performed joint graph-based clustering on these aligned 
vectors and visualized the results with t-distributed stochastic 

neighbor embedding (t-SNE) to verify that cells grouped entirely 
by cell type and were properly aligned across conditions (Fig. 2b).  
Our analysis revealed 13 cell clusters, which included the eight 
immune subsets described in the original publication, but separated 
additional populations as well (Fig. 2c and Supplementary Data 1). 
In particular, we were able to separate naive from memory CD4+  
T cells, plasmacytoid dendritic cells (pDCs) from conventional  
dendritic cells (DCs), and to identify an extremely rare (0.4%) population  
of contaminating erythroblasts. In addition, for T cells and B cells, 
we discovered activated subpopulations marked by a strong stress 
response expression signature that is likely an artifact of the culturing 
process in both conditions (Supplementary Fig. 2a,b). We verified 
the identity of our clusters by examining the expression of canonical 
cell-type markers (i.e., CD3D for T cells, CD79A for B cells), that were 
conserved across conditions (Fig. 2d and Supplementary Fig. 3).

Having aligned the data sets, we next sought to compare how PBMCs 
vary in response to IFN-β. As both conditions were drawn from the 
same pool of cells, we observed a strikingly similar proportional 
representation of all clusters in stimulated and control experiments  
(R = 0.997; Fig. 2e). However, each cell type exhibited significant 
gene expression changes upon IFN-β stimulation. Applying single-cell  
differential expression tests separately for each cluster, we were able 
to identify constitutive markers of the IFN-β response induced in all 
cells (ISG15, IFIT1), as well as components of the IFN-β response 
that varied across cell types (i.e., CXCL10 was activated primarily in  
myeloid cells upon stimulation) (Fig. 2d). We noted that even canonical  
cell-type markers such as CD14 were differentially expressed by 
monocytes (1.98-fold downregulation; Supplementary Fig. 3) in 
response to stimulation, highlighting the value of our unsupervised 
analyses in initially classifying cells.

Focusing on the novel subsets we were able to resolve, we compared 
the IFN-β response program between naive and memory CD4+ T cells 
and observed nearly identical response signatures (Supplementary 
Fig. 4a). However, while we observed a general correlation between 
pDC and DC responses, we also saw stark differences that reproduced 
across patients (Fig. 2f). When comparing the IFN-β responses across 
all cell types, we observed that myeloid and lymphoid cells strongly 
clustered together, but pDC exhibited a distinct response to IFN-β 
and clustered separately (Fig. 2g and Supplementary Fig. 4b).

We validated these findings externally by replicating the setup and 
stimulation of the original experiment, sorting populations of pDC and 
DC using standard surface markers (Online Methods), and performing  
bulk RNA-seq experiments in triplicate on stimulated and control 
cells. These bulk experiments strongly confirmed our single-cell  
predictions: genes that were differentially regulated by IFN-β  
stimulation exhibited strikingly similar patterns in both the single-cell  
and bulk data sets, and the bulk samples clustered directly with  
in silico-averaged data from the same cell type (Supplementary Fig. 5).  
Therefore, in a single transcriptome-wide analysis, our alignment 
procedure sensitively identified shared cell states through integrated 
clustering, and allowed for the identification of cell-type-specific 
response modules that are likely to play important roles in vivo  
during immune response to infection.

Strategies to identify non-overlapping populations
In the previous example, identical cell populations were used as input 
for both populations, and the cell subpopulations should therefore be 
fully overlapping. We wished to assess how our integration procedure 
would perform when non-overlapping populations were present in 
only one of the data sets. This is an important concern for both abun-
dant populations, where absence in one data set could throw off the  
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integration, and rare populations, which could blend in with an abundant 
cluster if unmatched, but may have significant biological importance.

To address this, we performed two in silico experiments, where we 
artificially removed abundant (CD14+ and CD16+ monocytes; 38%), 

or rare (erythroblasts; 0.5%) cells from the stimulated data set only 
and repeated the alignment procedure. When we removed abundant 
populations, we observed negligible effects on the overall cluster-
ing and both CD14+ and CD16+ control monocytes were readily  
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identified by visualization and graph-based clustering despite being 
present in only one data set (Supplementary Fig. 6a–c).

After removing stimulated erythroblasts, we observed that con-
trol erythroblast cells no longer separated in the integrated analysis, 
while other populations were unaffected (Supplementary Fig. 6d). 

We therefore aimed to design a new test to identify these cells as 
non-overlapping, so they could be flagged for further exploration 
downstream. We reasoned that while CCA may struggle to identify 
canonical correlation vectors that define rare subpopulations present 
in only one data set, PCA may be able to separate these cells, as we 
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have previously shown3. Therefore, we quantify how well the low-
dimensional space defined by CCA explains each cell’s expression 
profile, and compare this to PCA, which is performed on each data 
set independently (Online Methods). Cells where the percent variance 
explained is reduced by a user-defined cutoff in CCA compared to 
PCA are therefore defined by strong sources of variance that are not 

shared between the data sets. We use a cutoff of 50% for all examples 
in this manuscript to identify these cells.

This procedure enabled us to sensitively identify a rare group of 
non-overlapping cells in the control population, all of which could 
be identified as expressing high levels of HBA1 and HBA2, and cor-
responded to the erythroblast population whose signal was previously 
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blended into the rest of the data (Supplementary Fig. 6d–f). Notably, 
this test correctly did not flag similar cells when applied to the origi-
nal analysis of the full data sets (where the populations were fully 
overlapping), or in the in silico monocyte removal (where the aligned 
canonical correlation vectors enabled the identification of both rare 
and abundant cell states). Taken together, we conclude that our inte-
gration procedure is robust to abundant non-overlapping populations 

and can also identify rare populations that are present in a single data 
set, enabling further characterization.

Integrated analysis of scRNA-seq technologies
We next examined two scRNA-seq experiments that profiled the 
same tissue (hematopoietic progenitors from murine bone mar-
row), but with starkly different technologies. Nestorowa et al.37 used 
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the full-length SMART-Seq2 protocol with deep sequencing (6,558 
genes/cell) to profile 765 progenitors, while Paul et al.38 applied the 
3′ MARS (massively parallel RNA single-cell)-Seq protocol with shal-
low sequencing (1,453 genes/cell) to examine 2,686 cells. The distinct 
differences in amplification, normalization, and coverage pose chal-
lenges to integrate these data sets. Additionally, independent analy-
ses from both papers highlighted different aspects of the data; the 
SMART-Seq2 analysis focused on the broad and continuous trajec-
tories of cells committing to lymphoid, myeloid, erythroid lineages, 
while the MARS-Seq data set identified 18 distinct clusters (and one 
contaminating group of NK cells), representing progenitors of eight 
distinct hematopoietic lineages. Despite these differences, we asked 
whether the same distinct progenitor subsets might be found in both 
data sets through integrated analysis.

Seurat alignment returned canonical correlation vectors that  
separated distinct progenitor subtypes, revealing populations  
committed to all eight distinct hematopoietic lineages in both data 
sets, and successfully identifying the contaminating NK popula-
tion as ‘non-overlapping’ (Fig. 3a–c and Supplementary Fig. 7). 
After alignment, we mapped cells from the SMART-Seq2 data set 
onto their closest cluster in the MARS-Seq data set (Fig. 3c–f and 
Supplementary Data 2). We observed that early megakaryocyte-
erythrocyte progenitor cells, identified in the original SMART-Seq2 
publication, mapped exclusively onto erythroid and megakaryo-
cytic progenitors in the MARS-Seq data (clusters C1–7). Similarly, 
SMART-Seq2 granulocyte-macrophage progenitors mapped onto 
basophil, eosinophil, dendritic cell, neutrophil, and monocyte pro-
genitors (C11-18). While the MARS-Seq data specifically enriched 
for myeloid cells, the authors identified populations of very early 
progenitors that were FLT3+ (C9-10). These cells represent lympho-
myeloid component progenitors (lymphoid-primed multipotent pro-
genitors)39, and early lymphoid progenitors from the SMART-Seq2 
data mapped exclusively to these clusters. Indeed, after mapping, 
we observed nearly identical segregation of gene expression mark-
ers between SMART-Seq2 and MARS-Seq data sets (Fig. 3e,f and 
Supplementary Fig. 8), demonstrating that the biological drivers of 
alignment were lineage-determining factors. Therefore, Seurat align-
ment demonstrated that distinct committed progenitor populations 
were present in the SMART-Seq2 data set, but were challenging to 
detect in the original analysis owing to reduced cell number.

Lastly, as both data sets identified developmentally heterogeneous 
populations during erythroid differentiation (broken into seven stages 
in the MARS-Seq analysis), we applied diffusion maps to erythroid- 
committed cells to reconstruct a joint developmental trajectory (Fig. 3g).  
We observed that this developmental path maintained the ‘pseudo-
temporal’ ordering of cells within both data sets (Supplementary 
Fig. 9) and also aligned the two together, exhibiting nearly identical 
expression dynamics for canonical differentiation markers (Fig. 3h). 
Extending this analysis globally, we observed that gene expression 
changes across the trajectory were largely conserved between data 
sets, particularly for well-characterized effectors of erythropoiesis, 
yet we also saw technology-specific effects—for example, a strong 
JUN/FOS response that has previously been associated with cellular 
stress during scRNA-seq40 (Fig. 3h,i). Therefore, our procedure can 
successfully align both discrete and transitioning populations and 
enables the identification of gene-expression programs that are con-
served or unique to individual data sets.

The ability to pool data sets of the same heterogeneous tissues has 
the potential to enable similar ‘meta-analyses’ for data sets produced 
across multiple laboratories and technologies. To further demonstrate 
this, we include two additional examples (Supplementary Figs. 10  

and 11), demonstrating the integration of human pancreatic islets 
produced with four plate-based scRNA-seq technologies (CelSeq, 
CelSeq2, Fluidigm C1, SmartSeq2), and human PBMCs produced 
with three distinct technologies (10× Genomics 3′ assay, 10× 
Genomics 5′ assay, and the Illumina/BioRad ddSeq). In the first 
example, we identified eight populations of endocrine, exocrine, and 
stellate cells, clearly defined by cell-type-specific markers that were 
conserved across technologies (Supplementary Fig. 10). Notably, we 
also identified a rare population (1%) of endothelial cells which were 
present in all data sets, but whose rarity precluded their automated 
annotation in three of the four original analyses. As each sample was 
also from a different human donor, the proportion of cell types in 
each sample was highly variable but did not confound the integration 
procedure (Supplementary Fig. 10e).

In the second example, pooling the data sets yielded 16,653 PBMCs, 
allowing us to identify 16 immune populations, including 6 T-cell 
clusters (Supplementary Fig. 11a–d), and a rare subpopulation (0.5% 
frequency) of NK cells. This subpopulation lacked FCGR3A expres-
sion but was enriched for XCL1 and GZMK, consistent with highly 
cytotoxic CD56bright NK cells41 (Supplementary Fig. 11e). As with 
previous examples, the rarity of these cells precludes their identifica-
tion in any individual data set, and they were not identified in a pre-
vious analysis of 68,000 PBMCs4. These integrated data sets provide 
the opportunity to perform meta-analyses for differential expression 
across multiple technologies. As an example of this, we first performed 
individual ‘within data set’ differential expression tests, and then com-
bined the results (Online Methods). Using this approach to identify 
differential gene expression (DE) between NK cell subsets, we were 
able to more than triple the number of DE genes detected between 
these two cell groups (Supplementary Fig. 11f), including chemok-
ines (CCL5), transcriptional regulators (RORA), and surface recep-
tors (FCRL6), which, although not highly expressed, are functionally 
important. Therefore, integrating different scRNA-seq technologies 
boosts the statistical power not only to discover rare cell phenotypes, 
but also to identify transcriptomic markers of cell state.

Joint learning of cell types across species
As a final example, we tested the ability of Seurat to align heterogene-
ous populations from the same tissue but originating from different 
species. We examined a recent single-cell study of both human and 
mouse pancreatic islets, performed with the inDrop technology1, that 
identified islet cell types independently in both species42. The study 
found that cell-type transcriptomes were poorly conserved between 
human and mouse (average correlation between bulk transcriptomes 
of individual cell types: R = 0.42), often finding very few strongly 
expressed markers that were preserved between species. This wide-
spread divergence poses significant challenges for integration, as 
structure in the data set was largely driven by species as well as by 
individual donor (Fig. 4a and Supplementary Fig. 12). However, we 
reasoned that a subset of gene–gene correlations should still be con-
served, and therefore aligned all human cells against all mouse cells.

Indeed, Seurat alignment identified canonical correlation vectors 
that separated cell types, and flagged primarily small populations of 
immune cells (human mast cells and murine B cells) as non-overlap-
ping (Fig. 4b and Supplementary Fig. 12). We next performed a single 
integrated clustering analysis, identifying ten clusters, corresponding 
to alpha, delta, gamma, acinar, stellate, ductal, epithelial, immune, 
and two subgroups of beta cells (Fig. 4c, Supplementary Data 3 
and Supplementary Fig. 12). Our clusters agreed overwhelmingly 
with the analyses from the independent data sets42 (Supplementary  
Fig. 13), though we did observe a low rate (5.8%) of discordant 
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calls, particularly for cells with low UMI counts (Supplementary  
Fig. 14a,b). We were also able to identify a subset of cell-type markers 
that were conserved between human and mouse (Fig. 4d,e).

Notably, our procedure identified a rare subpopulation of beta cells 
in both human and mouse. These cells expressed identical levels of INS, 
but upregulated the expression of endoplasmic reticulum (ER) stress 
genes (HERPUD1; GADD45A) in both species (Fig. 4f). A similar signal 
was observed in a semi-supervised analysis of the human beta cells in 
the original manuscript42, but could not be detected in automated clus-
tering, or an independent analysis of the murine data set. In contrast, 
our integrated analyses revealed a conserved set of markers that were 
strikingly enriched for regulators of ER stress response to unfolded 
proteins43,44 (Fig. 4g), which has been shown to play an important 
role in the onset and progression of diabetes. Notably, expression of 
the transcription factors ATF3 and ATF4 was highly upregulated in 
both species, representing factors that have well-established roles in 
the initiation of stress responses in the pancreas45,46. Taken together, 
these results demonstrate that our alignment procedure can identify 
shared cell states even in the face of significant global transcriptional 
shifts, driven in this case by millions of years of evolution.

Benchmarking alignment and batch correction techniques
We next compared Seurat’s performance to widely used batch cor-
rection tools that have been applied to both bulk47 and single-cell 
genomics data5. To evaluate each technique, we designed an ‘align-
ment score’, which examines the local neighborhood of each cell after 
alignment (Online Methods). When data sets are well aligned, this 
local neighborhood will consist equally of cells from both data sets, 
enabling us to quantify the success of each procedure with a score 
ranging from 0 to 1.

On the five data sets presented here, we benchmarked Seurat’s per-
formance against ComBat48 and limma49 (Fig. 5). In each case, as 
can be visualized by t-SNE or quantified with our alignment score, 
Seurat’s integration procedure yielded superior results. The differ-
ences between these procedures were particularly striking when the 
transcriptomic differences between data sets (i.e., batch effect) sub-
stantially outweighed differences between cell types (‘biology’), as 
in cross-species integration. However, when we attempted to align 
data sets from different tissues as a negative control, we observed 
poor results and low alignment scores, even when cells were not auto-
matically classified as non-overlapping (Supplementary Fig. 15 and 
Supplementary Data 4).

DISCUSSION
We have developed a strategy to integrate scRNA-seq data sets by iden-
tifying shared sources of variation, corresponding to subpopulations 
present in multiple experiments. Implemented in the R toolkit Seurat, 
our procedure addresses several technical challenges, including the 
unbiased identification of shared gene–gene correlations across data 
sets, as well as the alignment of canonical correlation vectors using 
nonlinear ‘warping’ algorithms.

Data set integration represents a key step in a general framework 
for case-control studies performed with single-cell resolution. As new 
data sets are generated, we expect that similar computational analyses 
will not only be invaluable for characterizing the immune system’s 
response to vaccination, inflammatory disease, and cancer, but also 
provide deeper insight into how genetic variation and manipula-
tion affect heterogeneous populations. Similarly, we anticipate that 
these methods will enable consortia, such as the Human Cell Atlas15, 
which aims to define all human cell types by integrating data gen-
erated across diverse single-cell omics approaches, to combine data 

sets produced across many laboratories and technologies50. Recent 
benchmarking studies of diverse scRNA-seq51,52 technologies have 
consistently demonstrated that no single method is uniformly supe-
rior, but rather, that each has individual strengths and weaknesses, 
further highlighting the potential value of data integration.

We demonstrate the ability to align differentiated cell types between 
human and mouse pancreatic islets, identifying a shared population 
of beta cells responding to ER protein misfolding stress. These and 
similar analyses may provide valuable comparative tools for stud-
ies using mouse models of human disease, potentially enabling the 
identification of human correlates of pathogenic populations discov-
ered in mouse (or vice versa). Furthermore, new data sets will enable 
the alignment and comparison of developmental trajectories across 
species, leading to a deeper understanding of how the gene regula-
tory networks generating cellular diversity are rewired across evolu-
tion. As comparative genomics has played a fundamental role in our 
understanding of the human genome, we believe that cross-species 
analyses may yield similar insights toward our understanding of cel-
lular diversity.

Lastly, we note many challenges that future methods will address 
in extending this work. Although our procedure can jointly analyze 
multiple data sets with overlapping and non-overlapping populations, 
future data sets that consist of tens to hundreds of batches with dra-
matically varying sizes and non-overlapping populations will likely 
require new methods. We also note that examples in this manuscript, 
including data sets with tens of thousands of cells, run in less than half 
an hour on a standard laptop computer, but new data sets extending 
to millions of cells may require advanced computation, subsampling, 
or newly optimized techniques for integration. While we focus here 
on alignment of sequencing-based data sets, the recent invention of 
spatially resolved or in situ methods for transcriptomic profiling53–55 
raises the potential for integration with scRNA-seq data sets, extending  
previous efforts to spatially resolve scRNA-seq data9,10 towards an 
unsupervised procedure generalizable to any tissue.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

AcknowlEdgmEntS
We thank members of the Satija laboratory, as well as P. Roelli, M. Stoeckius,  
G. Fishell, C. Desplan, R. Bonneau, E. Macosko, and A. Corvelo for their valuable 
feedback, and F. Hamey, HM Kang, and J. Ye for assistance with published data 
sets. This work was supported by an NIH New Innovator Award (1DP2HG009623-
01) and R01 (5R01MH071679-12) to R.S. and an NSF Graduate Fellowship 
(DGE1342536) to A.B.

AUtHoR contRIBUtIonS
A.B. and R.S. conceived the research. A.B., P.H., and R.S. implemented the 
alignment procedure, performed all data analysis, and wrote the manuscript. 
E.P. performed the PBMC validation experiments, and P.S. performed the ddSeq 
experiments.

comPEtIng  IntEREStS
The authors declare no competing interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html. Publisher’s note: springer nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

1. Klein, A.M. et al. Droplet barcoding for single-cell transcriptomics applied to 
embryonic stem cells. Cell 161, 1187–1201 (2015).

http://dx.doi.org/10.1038/nbt.4096
http://dx.doi.org/10.1038/nbt.4096
http://dx.doi.org/10.1038/nbt.4096
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


420 VOLUME 36 NUMBER 5 MAY 2018   nature biotechnology

A n A ly s I s

2. Zilionis, R. et al. Single-cell barcoding and sequencing using droplet microfluidics. 
Nat. Protoc. 12, 44–73 (2017).

3. Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual 
cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

4. Zheng, G.X.Y. et al. Massively parallel digital transcriptional profiling of single cells. 
Nat. Commun. 8, 14049 (2017).

5. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-
cell transcriptomics. Cell 166, 1308–1323.e30 (2016).

6. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic 
cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

7. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed  
by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 
(2014).

8. Welch, J.D., Hartemink, A.J. & Prins, J.F. SLICER: inferring branched, nonlinear 
cellular trajectories from single cell RNA-seq data. Genome Biol. 17, 106 
(2016).

9. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction 
of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

10. Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to 
tissue of origin. Nat. Biotechnol. 33, 503–509 (2015).

11. DeLaughter, D.M. et al. Single-cell resolution of temporal gene expression during 
heart development. Dev. Cell 39, 480–490 (2016).

12. Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and 
regulatory coordination in human B cell development. Cell 157, 714–725 
(2014).

13. Blakeley, P. et al. Defining the three cell lineages of the human blastocyst by 
single-cell RNA-seq. Development 142, 3613 (2015).

14. Johnson, M.B. et al. Single-cell analysis reveals transcriptional heterogeneity of 
neural progenitors in human cortex. Nat. Neurosci. 18, 1–30 (2015).

15. Regev, A. et al. The Human Cell Atlas. Elife 6, 1–30 (2017).
16. Kharchenko, P.V., Silberstein, L. & Scadden, D.T. Bayesian approach to single-cell 

differential expression analysis. Nat. Methods 11, 740–742 (2014).
17. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional 

changes and characterizing heterogeneity in single-cell RNA sequencing data. 
Genome Biol. 16, 278 (2015).

18. Wang, B., Zhu, J., Pierson, E., Ramazzotti, D. & Batzoglou, S. Visualization and 
analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. 
Methods 14, 414–416 (2017).

19. Kiselev, V.Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. 
Methods 14, 483–486 (2017).

20. Lin, P., Troup, M. & Ho, J.W.K. CIDR: Ultrafast and accurate clustering through 
imputation for single-cell RNA-seq data. Genome Biol. 18, 59 (2017).

21. Prabhakaran, S., Azizi, E. & Pe’er, D. Dirichlet process mixture model for correcting 
technical variation in single-cell gene expression data. Proc. 33rd Int. Conf. Mach. 
Learn. 48, 1070–1079 (2016).

22. Ntranos, V., Kamath, G.M., Zhang, J.M., Pachter, L. & Tse, D.N. Fast and accurate 
single-cell RNA-seq analysis by clustering of transcript-compatibility counts. 
Genome Biol. 17, 112 (2016).

23. Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a 
novel clustering method. Bioinformatics 31, 1974–1980 (2015).

24. Lei, Z., Bai, Q., He, R. & Li, S.Z. Face shape recovery from a single image using 
CCA mapping between tensor spaces. 26th IEEE Conf. Comput. Vis. Pattern 
Recognition, CVPR doi:10.1109/CVPR.2008.4587341 (2008).

25. Zhou, F. & Torre, F. in Advances in Neural Information Processing Systems 22; 
NIPS 2009 (eds. Y. Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams,  
C.K.I. & Culotta, A.) https://papers.nips.cc/paper/3728-canonical-time-warping-for-
alignment-of-human-behavior (Neural Information Processing Systems Foundation, 
Inc., 2009).

26. Wang, C. & Mahadevan, S. in Proc. Twenty-Second International Joint Conference 
on Artificial Intelligence, Vol. 2 (ed. Walsh, T.) 1541–1546 (AAAI, 2011).

27. Huang, H., He, H., Fan, X. & Zhang, J. Super-resolution of human face image using 
canonical correlation analysis. Pattern Recognit. 43, 2532–2543 (2010).

28. Hotelling, H. Relations between two sets of variates. Biometrika 28, 321–377 
(1936).

29. Hardoon, D.R., Szedmak, S. & Shawe-Taylor, J. Canonical correlation analysis: an 
overview with application to learning methods. Neural Comput. 16, 2639–2664 
(2004).

30. Witten, D.M., Tibshirani, R. & Hastie, T. A penalized matrix decomposition, with 
applications to sparse principal components and canonical correlation analysis. 
Biostatistics 10, 515–534 (2009).

31. Lê Cao, K.-A., Martin, P.G., Robert-Granié, C. & Besse, P. Sparse canonical methods 
for biological data integration: application to a cross-platform study. BMC 
Bioinformatics 10, 34 (2009).

32. Waaijenborg, S., Verselewel de Witt Hamer, P.C. & Zwinderman, A.H. Quantifying 
the association between gene expressions and DNA-markers by penalized canonical 
correlation analysis. Stat. Appl. Genet. Mol. Biol. 7, e3 (2008).

33. Kettenring, J. Canonical analysis of several sets of variables. Biometrika 58, 433–
451 (1971).

34. Nielsen, A.A. Multiset canonical correlations analysis and multispectral, truly 
multitemporal remote sensing data. IEEE Trans. Image Process. 11, 293–305 
(2002).

35. Berndt, D. & Clifford, J. Using dynamic time warping to find patterns in time series. 
Work. Knowl. Knowl. Discov. Databases 398, 359–370 (1994).

36. Kang, H.M. et al. Multiplexed droplet single-cell RNA-sequencing using natural 
genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

37. Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and 
progenitor cell differentiation. Blood 128, e20–e31 (2016).

38. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid 
progenitors. Cell 163, 1663–1677 (2015).

39. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-
megakaryocytic potential a revised road map for adult blood lineage commitment. 
Cell 121, 295–306 (2005).

40. Lacar, B. et al. Corrigendum: nuclear RNA-seq of single neurons reveals molecular 
signatures of activation. Nat. Commun. 8, 15047 (2017).

41. Poli, A. et al. CD56bright natural killer (NK) cells: an important NK cell subset. 
Immunology 126, 458–465 (2009).

42. Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas 
reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 
(2016).

43. Scheuner, D. & Kaufman, R.J. The unfolded protein response: a pathway that links 
insulin demand with β-cell failure and diabetes. Endocr. Rev. 29, 317–333 
(2008).

44. Walter, W., Sánchez-Cabo, F. & Ricote, M. GOplot: an R package for visually 
combining expression data with functional analysis. Bioinformatics 31, 2912–2914 
(2015).

45. Jiang, H.-Y. et al. Activating transcription factor 3 is integral to the eukaryotic 
initiation factor 2 kinase stress response. Mol. Cell. Biol. 24, 1365–1377 (2004).

46. Papa, F.R. Endoplasmic reticulum stress, pancreatic β-cell degeneration, and 
diabetes. Cold Spring Harb. Perspect. Med. 2, a007666 (2012).

47. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome 
Biol. 17, 13 (2016).

48. Johnson, W.E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray 
expression data using empirical Bayes methods. Biostatistics 8, 118–127 
(2007).

49. Ritchie, M.E. et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

50. Lake, B.B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA 
sequencing of the human brain. Science 352, 1586–1590 (2016).

51. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. 
Mol. Cell 65, 631–643.e4 (2017).

52. Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. Nat. 
Methods 14, 381–387 (2017).

53. Junker, J.P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 
662–675 (2014).

54. Lee, J.H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 
343, 1360–1363 (2014).

55. Ståhl, P.L. et al. Visualization and analysis of gene expression in tissue sections 
by spatial transcriptomics. Science 353, 78–82 (2016).

https://papers.nips.cc/paper/3728-canonical-time-warping-for-alignment-of-human-behavior
https://papers.nips.cc/paper/3728-canonical-time-warping-for-alignment-of-human-behavior


nature biotechnologydoi:10.1038/nbt.4096

ONLINE METHODS
The Seurat alignment procedure is designed to integrate single-cell RNA 
sequencing data (scRNA-seq) across distinct data sets. Following is an over-
view of the main steps comprising a typical workflow:

1. Data preprocessing and gene selection.
2. Define a shared correlation space with canonical correlation analysis.
3. Identify rare non-overlapping subpopulations.
4. Align correlated subspaces using dynamic time warping.
5. Integrated analysis across data sets (clustering, trajectory building, dif-

ferential expression).
Below, we describe each of these steps in detail. Additionally, we provide 

full command lists for the integration of the stimulated and resting immune 
data sets and for the integration of the four scRNA-seq data sets of human 
pancreatic islet cells (produced with four different plate-based technologies 
CelSeq, CelSeq2, Fluidigm C1, SmartSeq2) as Supplementary Software.

Single-cell data set preprocessing. For all single-cell analysis, we performed 
the same initial normalization. Gene expression values for each cell were 
divided by the total number of transcripts and multiplied by 10,000. These 
values were then natural-log transformed using log1p before further down-
stream analyses. After normalization, we calculated scaled expression (z-scores 
for each gene) for downstream dimensional reduction.

Comparison of stimulated and resting immune cells. We obtained a 
unique molecular identifier (UMI) count matrix for the Kang et al.36 study 
from GSE96583. The authors generously provided us with the output of their 
demuxlet algorithm, which computationally identifies doublets, and assigns 
individual single cells to one of eight patients. We removed cells with fewer 
than 500 genes detected, leaving 14,039 single cells in total.

Integrated analysis of scRNA-seq technologies. We obtained a read count 
matrix for the SMART-Seq2 data set (Nestorowa et al.)37 under the GEO acces-
sion GSE81682, and considered 765 annotated progenitors cells expressing 
at least 4,000 genes. The authors generously provided lineage annotations 
for each cell (corresponding to Fig. 4 in the original publication, used in our 
Fig. 3). We obtained a batch-corrected UMI count matrix for the MARS-Seq 
data set38 from the authors’ online resource (http://compgenomics.weizmann.
ac.il/tanay/?page_id=649), where we also obtained the MARS-Seq cluster IDs 
for each cell. This data set had been previously filtered to remove cells with 
less than 500 detected UMI for a total of 2,686 single cells.

Both data sets contain cycling progenitors, and heterogeneity between cell 
cycle stages for these cells has previously been shown to confound develop-
mental analyses. Therefore, independently for both data sets, we first assigned 
a cell cycle score to each cell using the PCA method56 on a previously anno-
tated list of cell cycle genes57. We then used the ScaleData function in Seurat 
(using the cell cycle score as latent variable in a linear regression framework) 
to mitigate this source of variation in the data set, before CCA.

Joint clustering across species. We obtained UMI count matrices for the 
human and mouse inDrops data sets (Baron et al., 2016)42 from GEO acces-
sion GSE84133. For both species, we removed cells with less than 500 detected 
genes to obtain 8,536 and 1,770 single cells, respectively. We also regressed 
out individual-specific effects using ScaleData before CCA. We considered all 
homologous genes with identical gene names between the human and mouse 
data sets, and allowed the INS human gene to map to the mouse Ins1 and Ins2 
genes as in the original manuscript42.

Alignment of multiple human pancreas data sets. For the four human pan-
creas data sets, we obtained count matrices from accession numbers GSE81076 
(CelSeq), GSE85241 (CelSeq2), GSE86469 (Fluidigm C1), and E-MTAB-5061 
(SMART-Seq2). We filtered cells that expressed less than 1,750 unique genes/
cell (CelSeq), or 2,500 genes/cell (CelSeq2/Fluidigm C1/SMART-Seq2), leav-
ing 6,224 cells in total.

Integrated analysis of multiple PBMC data sets across technologies. For 
the three human PBMC data sets, we obtained gene expression matrices from 
10× genomics (https://support.10xgenomics.com/single-cell-gene-expression 

/datasets/2.1.0/vdj_v1_pbmc_5gex, https://support.10xgenomics.com/sin-
gle-cell-gene-expression/datasets/2.1.0/pbmc8k). For the ddSeq experiment, 
PBMCs from a healthy donor were diluted to 2,500 cells/µl and run accord-
ing to manufacturer’s protocol through 8 ddSeq wells (two cartridges) with 
an expected yield of 2,400 cells in total. Sequencing libraries were prepared 
according to manufacturer’s instructions and sequenced on two lanes of a 
HiSeq 2500 in rapid run mode, with 68 cycles for read 1 (cell barcodes + 
UMI), 8 cycle sample index and 75 cycle read 2 (transcript). We filtered out 
those cells with fewer than 750 unique genes, resulting in 16,653 cells in total. 
Additionally, we observed significant mitochondrial heterogeneity within each 
data set, in keeping with previous reports58, and regressed out mitochondrial 
heterogeneity from each data set before running CCA.

Gene set selection. Although the alignment procedure can utilize any gene 
that is measured with nonzero variance in all data sets, we focused on genes 
that were highly variable in one or both data sets. We identified these genes 
by calculating the dispersion (variance to mean ratio) for all genes in each 
data set and selected 1,000 genes with the highest dispersion from each. We 
took the union of these two resulting gene lists as the input genes for CCA. 
For multi-CCA, we required that input genes be in the highly variable gene 
list for at least two data sets.

Calculation of canonical correlation vectors. Standard canonical correlation 
analysis was designed to find projections that maximize correlation between 
two vectors (data sets or groups). We first describe the two-set scenario and 
then extend this to multiple sets.

Two set canonical correlation. The first step in the alignment utilizes a vari-
ation on canonical correlation analysis (CCA) to find projections of both 
data sets such that the correlation between the two projections is maximized. 
Formally, CCA finds projection vectors u and v such that the correlation 
between the two indices uTX and vTY is maximized28.

max subject tou v
T T T T T Tu X Yv u X Xu v Y Yv, , ( )≤ ≤1 1 1

To apply this in the context of scRNA-seq, let Xg,c be a gene expression matrix 
of genes g1, g2, ..., gn by cells c1, c2, ..., cm and Yg,d be a gene expression matrix 
of the same genes g1, g2, ..., gn by cells d1, d2, ..., dp. In many scRNA-seq experi-
ments, the number of genes of interest that are shared between the two data 
sets is often much smaller than the total number of cells that were measured 
(n << m + p). Consequently, the vectors u and v that are returned from CCA 
as described in equation (1) will not be unique.

One potential solution to this is to regularize or penalize the CCA procedure 
to promote sparsity. However, this would assign many cells zero loadings in 
the resulting projections and result in a complete loss of information for a 
significant proportion of cells. Therefore, we treat the covariance matrix within 
each data set as diagonal, a solution that has demonstrated promising results 
in other high-dimensional problems59,60. We substitute the identity matrix for 
XTX and YTY to arrive at equation (2). 

max subject tou v
T Tu X Yv u v, , ( )2

2
2
21 1 2≤ ≤

To construct our canonical correlation vectors, we standardized X and Y to 
have a mean of 0 and variance of 1.

 ∀ [ ] = [ ]( ) = ∀ [ ] = [ ] =∑ ∑c dX c n var X c X d n var X d, / , , , / , ( , )0 1 0 1and

We then are able to solve for the canonical correlation vectors u and v using 
singular value decomposition (SVD) as follows:

Let 
K X YT=

 K can be decomposed using SVD as

K T= ΓΛ∆

 where 
Γ = ( ,..., )g g1 k

∆ = ( ,..., )d d1 k

Λ = ( ,..., )/ /l l1
1 2 1 2

k

(1)(1)

(2)(2)

(3)(3)
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Since we have substituted the identity matrix for XTX and YTY, we can obtain 
our canonical correlation vectors u and v as the left and right singular vectors 
from the SVD for i = 1, …, k.

ui = g i

vi i= d

Since we are interested in only a subset of the canonical correlation vectors, we 
approximated the singular value decomposition with a partial singular value 
decomposition using the augmented implicitly restarted Lanczos bidiagonali-
zation algorithm implemented in the irlba R package61. This procedure returns 
a user-defined number (k) of left and right singular vectors, which approximate 
the canonical correlation vectors that project each expression matrix into the 
maximally correlated subspace.

Multi-set canonical correlation. Two-set canonical correlation analysis can be 
extended to multi-set analysis (i.e., Multi-CCA), aiming to identify projection 
vectors that maximize the overall correlation across all data sets. There are sev-
eral options for how to exactly formulate this optimization problem, for which 
full descriptions can be found in Kettenring (1971)33. Here, we’ve chosen to use 
the same approach as described in Witten and Tibshirani (2009)30.

Formally, if we have N data sets X1,…,XN, the goal is to find projection 
vectors W = w1,…,wN that maximize: 

max
....,w w i j

i
T

i
T

j j n
T

n
T

n n
N

w X X w w X X w n
1

1
<
∑ = ∀subject to

To address cases where there are more cells than genes, as discussed in the 
previous section, we again make the diagonalizing assumption for the cov-
ariance matrix of each data set. By substituting the identity matrix for each 
X Xn

T
n  we arrive at

max
....,w w i j

i
T

i
T

j j n
N

w X X w w
1

2 1
<
∑ ≤subject to

To construct the canonical correlation vectors, we first standardized each Xn 
such that ∀ [ ] = [ ]( ) =∑c X c n X c, / , ,0 1var . We then are able to solve for the 
canonical correlation vectors wn using the following iterative algorithm:

Algorithm 1 Multi-CCA
 procedure MCCA
   for all Xn do
     Γ Λ ∆, , ( )[ ] ← SVD X
     initialize wn ← ∆  
    for 1, …, # of CCs to compute do
    while| |/| |o o o1 2 1−   < threshold do
      o w ccn1 4← calculate objective for [ ] ( )
      for all Xn do 

       update w cc
X X w cc

X X w cc
n

n
T

k kk n

n
T

k kk n

[ ]
( [ ])

( [ ])
← ≠

≠

∑
∑ 2

        
o w ccn2 4← calculate objective for [ ] ( )

   return W

For computational efficiency, we again use irlba for the initializing singular 
value decomposition and set a default convergence threshold of 10−3 with a 
maximum of 25 iterations in the while loop.

Identification of rare non-overlapping subpopulations. CCA returns vectors 
that capture sources of variance that are shared between data sets. Therefore, 
CCA will not pick up sources of variation that are unique to a single data 
set, for example, if there is a rare unique population in only one data set. In 
contrast, principal component analysis (PCA) would capture this signal when 
performed individually on each data set.

We therefore reasoned that we could compare the results of PCA and CCA 
to identify cells whose expression patterns were not well-explained by a shared 
correlation structure. In principle, this allows for unsupervised identifica-
tion of non-overlapping subpopulations, which can be filtered out before 

(4)(4)

(4)(4)

(4)(4)

continuing the alignment procedure. This is of particular importance for rare 
subpopulations, which, if not identified as non-overlapping, could blend into 
abundant cell states after alignment (Supplementary Fig. 6d–f).

Therefore, we quantified how well the low-dimensional subspace defined 
by CCA explains the variance in gene expression as compared to PCA run 
on each data set independently. By computing the ratio η of these two meas-
ures of variance, we are able to identify cells that have low values for η and 
may originate from non-overlapping states. In our demonstrated alignment 
examples, we chose to use the first 20 dimensions from our CCA and PCA 
calculations when computing η.

To compute this ratio, we first calculate the gene loading matrices A and B 
for X and Y respectively as 

A Xu=

B Yv=
 

We then form orthonormal bases D and E via QR decomposition such that
A DR=
B ER=

and project the expression data onto D and E to get X  and Y .
X X DT=
Y Y ET=

Next, we reconstruct the data to get X  and Y

X DXT =

Y EYT =
 

We then calculate the variance in gene expression sCCA or every cell in X  
and Y .

s sCCA
g

n
CCA

g

n
X Yg g= =∑ ∑var var( [ ,]) ( [ ,]) 

Then, we run a principle component analysis on X and Y to produce orthogo-
nal gene loading matrices F and G. Similarly, we can project the expression 
data onto F and G and reconstruct the data to get X and Y . 

X X FT=

Y Y GT=

X FXT =

Y GYT =
 

We calculate the variance in gene expression sPCA  in X  and in Y  using 
equation (5). Finally, we define η as the ratio of sCCA  to sPCA  to serve as an 
indicator of how well each cell is defined by shared sources of variance (lower 
values indicating non-overlapping cells).

h s
s

= CCA
PCA

Empirically, we applied a threshold of 0.5 uniformly in all data sets, where cells 
with η < 0.5 were considered non-overlapping. We found that this unsupervised 
procedure robustly identified rare populations that were unique to only one data 
set. These included terminally differentiated NK cells in the MARS-Seq hemat-
opoietic progenitors, B and T cells in the murine pancreatic islet data set, and mast 
cells in the human pancreatic islet data set (Supplementary Figs. 7 and 12).

However, identifying a single value for this threshold was challenging for 
abundant populations that were specific to a single data set, for example, in our 
negative control experiments where we aligned data sets that have negligible 
biological similarity. However, in each of these cases (Supplementary Fig. 15), 
even though we did not initially identify these cells as non-overlapping, our 
procedure did not artificially align cells from these data sets together. While 
we anticipate that new methods that can robustly identify non-overlapping 
subpopulations before alignment will be exciting avenues for further develop-
ment, our examples demonstrate that our method does not artificially align 
either rare or abundant non-overlapping subpopulations together.

(5)(5)

(6)(6)



nature biotechnologydoi:10.1038/nbt.4096

Aligning canonical correlation vectors. After CCA, CC vectors are by defi-
nition correlated, but not necessarily aligned between data sets. In particu-
lar, shifts in feature scale or population densities can drive global differences 
between CC loadings, and must be corrected for as part of the alignment 
procedure, as described below.

Gene selection for canonical correlation vector alignment. We first identify 
genes whose expression robustly correlates with each projection vector in both 
data sets, and therefore drive shared sources of variation. For this, we use the 
biweight midcorrelation (bicor), a median based similarity metric.

For each canonical correlation vector i,…, k

V = ∀ [ ]( ) [ ]( )g i ibicor X g u bicor Y g vmin( , , , , , )

We take the genes with the highest ζ values (M) to construct a “metagene”, a 
weighted linear combination of genes, to use for alignment. In all examples 
here, we used the top 30 genes to construct the metagene average. However, 
we note that exact choice of this parameter is robust across a wide range of 
values. Across all examples in Figures 2–4, we varied this parameter across 
a range (20–100 genes), and assessed the final alignment score. We observed 
only minor differences (with an average of less than 2% shift compared to 
30 genes).

However, when we continued to reduce this parameter we did begin to 
observe larger changes in the alignment score (>5% when using fewer than 
ten genes). This is likely due to the fact that when only small numbers of genes 
are considered, biological stochasticity or technical noise will play a larger role 
in the pooled metagene. Therefore, the minimum number of genes that are 
required to have conserved expression patterns between data sets, in order to 
be correctly aligned, will depend on the scale and sequencing depth of each 
data set. Data sets with larger cell number, or deeper sequencing, will be able 
to pick up on more subtle patterns (with fewer conserved genes), analogous to 
experimental design considerations for detecting subtle transcriptomic states 
using unsupervised clustering.

Alignment of two canonical correlation vectors. We define two vectors of 
metagenes Φi and Θi where for each cell c in X and each cell d in Y, the meta-
gene is defined as

Φ Θi c i iu X M c v Y M d, ,, ,= [ ] = [ ]i d  

Each vector of metagenes is then scaled from 0 and 1 to match its 95% refer-
ence range. To do this, we define Q as the quantile function that gives the 
inverse of the empirical distribution function.
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We then look for systematic shifts that still remain after scaling which are 
largely driven by outliers and linearly shift the metagenes to correct for this. 
This procedure robustly corrects for differences in feature scale.

 ′ = ′ + ( ) − ( )
= …

′ ′Φ Φ Φ Θi i
z

Q z Q zi imin
, ,10 90  

Next, we determine an optimal mapping between the metagenes, using 
dynamic time warping (DTW) as implemented in the dtw R package62 with 
default parameters. Traditionally used to find an alignment between two time 
series35, DTW effectively aligns each cell in the smaller data set to the cell with 
the most similar metagene expression in the larger data set, while maintaining 
the relative ordering of cells within each data set. To do this, DTW computes 
a warping path W that maps elements of X and Y in order to minimize the 
distance between them.

W w w wk= 1 2, , ...,

Each wk corresponds to a point along the warping path that maps an element 
in X to an element in Y. The minimization problem can then be defined in 
terms of the cumulative warping distance. We chose to use Euclidean distance 
as the distance function δ.

(7)(7)

DTW X Y w
W k
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A key feature of DTW in the alignment procedure is the nonlinear warping 
of each metagene vector. These compressions and stretches correspond to 
potential shifts in population density across data sets. We then apply an identi-
cal warping to the canonical correlation vectors, mapping the CC values from 
both data sets onto a common aligned scale. We apply this procedure to each 
pair of basis vectors individually to define a single, aligned, low-dimensional 
space representing both data sets.

Alignment of multiple canonical correlation vectors. Extending the align-
ment procedure to multiple data sets follows naturally from the two data-set 
case. We first choose a reference data set, which we set by default to be the 
data set with the largest number of cells. We then perform repeated pairwise 
alignments of the canonical correlation vectors to the reference exactly as 
described for the two-set case above. This procedure warps the canonical 
correlation vectors for each data set onto a common aligned space, defined 
by the “reference” data set.

CC selection for downstream analysis. Dimensionality reduction, such as 
PCA, is a commonly applied tool in scRNA-seq analysis to help overcome tech-
nical noise and summarize the data in a smaller number of features. Choosing 
the number of PCs to include for downstream analyses is often performed 
by plotting the variance explained as a function of the number of principal 
components, and examining this relationship for saturation. Similarly, here 
we must decide on the number of aligned canonical correlation vectors to 
include for downstream analysis. To help guide this parameter choice, we cal-
culated a measure of the correlation strength for each CC vector. Specifically, 
for each data set Xn and each CC vector wn, we examined all genes involved 
in the construction of the “metagene” (as described above, M m mg= 1,..., ) 
and calculated the average biweight midcorrelation.

t = [ ]( )
=
∑1

1g
bicor X m w

i

g

n i n, ,

For the reference data set, we take the average of τ across all pairwise calcu-
lations. For each data set, we plot a LOESS curve of τ (“Shared correlation 
strength”) as a function of CC vector. Curves for all five examples in this 
manuscript are shown in Supplementary Figure 1. The saturation point on 
these curves provides a valuable guide for the number of CCs to include in 
downstream analyses. Importantly, while the exact saturation point can be sub-
jective, we observe that the global structure of our integrated data set is robust 
to the exact choice of this parameter within 5CCs (Supplementary Fig. 1).

Calculating an alignment score. While our t-SNE plots provide a visual rep-
resentation of the overlap between data sets after alignments, we sought to 
develop a quantitative metric to ask how well any group of data sets is aligned. 
We calculated an alignment score as follows. First, we randomly downsample 
the data sets to have the same number of cells as the smallest data set. Then, 
we construct a nearest-neighbor graph based on the cells′ embedding in some 
low-dimensional space (the aligned CC space after running the alignment pro-
cedure). For every cell, we then calculate how many of its k nearest-neighbors 
belong to the same data set and average this over all cells to obtain x . If the 
data sets are well-aligned, we would expect that each cells’ nearest neighbors 
would be evenly shared across all data sets. For all of our examples, we chose 
k to be 1% of the total number of cells. We then normalize by the expected 
number of same data set cells and scale to range from 0 to 1.

Alignment Score = 1 −
−

−

x k
N

k k
N

Integrated analysis across data sets. The aligned canonical basis vectors form 
a shared low-dimensional space that can be used for integrated downstream 
analyses, for example, clustering or trajectory building. We describe our analy-
ses individually for each data set below.

(8)

(9)
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Modularity-based clustering to identify cell types. To partition cells into 
clusters, we used the smart local moving (SLM) algorithm for modularity-
based clustering63. For each of the five data sets, we computed a cell–cell 
distance matrix constructed on selected aligned canonical correlation vec-
tors. We constructed a shared-nearest neighbor (SNN) graph based on this 
distance matrix to use as input to the SLM algorithm, implemented through 
the FindClusters function in Seurat. To visualize the resulting clusters in two 
dimensions, we used Barnes–Hut implementation of the t-distributed stochas-
tic neighbor embedding (t-SNE) algorithm64.

Identification of PBMC subtypes. We chose to use the first 20 aligned canoni-
cal correlation vectors to calculate the cell–cell distance matrix and subsequent 
SNN. We ran FindClusters with a resolution parameter of 0.6, resulting in 13 
distinct clusters of cells. These clusters corresponded to CD14+ and CD16+ 
monocytes, CD4+ memory and naive T cells, CD8+ T cells, B cells, NK cells, 
dendritic cells, and erythrocyte populations, which all showed significant 
enrichment for canonical cell-type markers after running a Wilcoxon rank-
sum test for differential expression implemented in Seurat as FindAllMarkers. 
The same 20 CCs were used as input for visualization via t-SNE.

To understand global correlations between IFNβ responses for each cell type 
(Fig. 2g), we first placed cells into 26 bins (based on the 13 immune clusters, 
but also grouped stimulated and resting cells within each cluster separately), 
and calculated the average expression for each gene within each group. The 
difference between the average expression of stimulated and resting cells for 
each cluster represents its transcriptional response to IFNβ stimulation. We 
then calculated the Pearson correlation of these responses between all pairs of 
clusters, using 430 genes that exhibited at least a twofold change in response 
to stimulation for at least 1 of the 13 clusters.

Identification of hematopoietic progenitor populations. To identify the 
hematopoietic progenitor populations present in both the SMART-Seq2 data 
set and the MARS-Seq data set, we used the first ten aligned canonical cor-
relation vectors as input to calculate the cell–cell distance matrix, SNN, and 
visualization via t-SNE.

We then mapped cells from the SMART-Seq2 data set to one of the clusters 
originally identified in the MARS-Seq data set. In principle, we could simply 
map each SMART-Seq2 cell to the cluster identity of its nearest neighbor in 
the MARS-Seq data set. However, in order to make sure that our mappings 
were also consistent with the overall structure of the data, we used a two-step 
procedure.

We first performed a joint clustering on the first ten aligned CC embeddings 
using the SLM algorithm via FindClusters with default parameters, reveal-
ing ten clusters (referred to below as ‘joint clusters’). We then calculated the 
percentage of cells in each MARS-Seq cluster that fell into each of the joint 
clusters. Let Freqxy represent the proportion of cells in MARS-Seq cluster x, 
that fall into joint cluster y.

We next mapped each SMART-Seq cell to the cluster of its closest MARS-
Seq neighbor, based on the SNN-defined distance matrix. However, we defined 
the mapping as discordant if the mapped cluster was present at less than 25% 
frequency in the joint clustering, i.e., Freqxy < 0.25. In this case, we mapped the 
SMART-Seq2 cell to its next closest neighbor. Finally, once all cells had been 
mapped to MARS-Seq clusters, we assigned each cell a lineage identity based 
on Figure 2 in Paul et al. 2015 (ref. 38). These cluster and lineage assignments 
were used in all downstream analyses.

Identification of pancreatic islet subtypes in human and mouse. We identi-
fied conserved populations of islet subtypes by running FindClusters using the 
first 20 aligned CC embeddings with a resolution parameter of 0.5. This resulted 
in ten clusters corresponding to alpha, normal beta, ER stressed beta, delta, 
gamma, ductal, acinar, stellate, endothelial, and immune cells. The same 20 
aligned CCs were used for t-SNE visualization. We also observed an 11th cluster 
of 115 cells that was defined almost entirely by low complexity (median 1,088 
genes), which we removed from further analysis (Supplementary Fig. 13).

Identification of pancreatic islet subtypes in the four human data sets.  
In order to identify populations of islet subtypes across the four human pan-
creas data sets, we ran FindClusters using the first ten CC embeddings with a 

resolution parameter of 0.4. This gave eight distinct clusters corresponding to 
alpha, beta, ductal, acinar, delta, gamma, stellate, and endothelial populations. 
The same ten aligned CCs were used for t-SNE visualization.

Identification of PBMC subtypes across three technologies. We chose to 
use the first 20 aligned canonical correlation vectors as input to FindClusters 
with a resolution parameter of 1.2. Sixteen clusters were identified, which cor-
respond to CD4+ memory, naive, and regulatory T cells, two CD14+ monocyte 
populations (HLA low and HLA high), pre-B cells, B cells, CD8+ naive T cells, 
two populations of CD8+ effector T cells, CD16+ monocytes, conventional 
dendritic cells, plasmacytoid dendritic cells, megakaryocytes, and two popula-
tions of NK cells (CD56bright and CD56dim).

Construction of joint erythroid developmental trajectories. We first took 
a subset of the combined hematopoietic progenitor data set that included 
all cells originally assigned to the first seven clusters in the MARS-Seq 
data set and cells that mapped to one of those clusters from the SMART-
Seq2 data set. We then built a diffusion map using the first ten aligned CC 
embeddings using the diffuse function from the diffusionMap R package 
(Richards 2014)65 with epsilon parameter set to 9, corresponding to the 
median distance to the 0.05*n nearest neighbor. Next, we fit a principal 
curve66 through the first two diffusion map coordinates using the principal.
curve function from the princurve R package with default parameters67. The 
order of a cell’s projection onto this principal curve represents its predicted 
progression through erythropoiesis, or “pseudotime” value, as shown in  
Supplementary Figure 9a,b.

In order to determine the transcriptomic range for each gene across eryth-
ropoiesis for the SMART-Seq2 and MARS-Seq data sets, we first calculated 
the average expression within clusters C1–C7 for each gene, and calculated the 
range (max-min) of these values. We performed this procedure independently 
for cells in both data sets, and plotted the values in Figure 3i.

Differential expression testing to detect conserved cell-type markers. To 
identify cell-type markers that are conserved across data sets, we first per-
formed a joint clustering of the data as described above. Then we conducted 
differential expression testing on each cell-type cluster for each data set inde-
pendently using a Wilcoxon rank sum test, requiring a minimum 1.25-fold 
difference between the two groups of cells and expression in at least 10% of 
cells in both groups. We used the metap R package to combine P-values using 
the minimump method. For a detailed review of meta-analysis methods for 
differential expression, see Tseng, et al. 2012 (ref. 68). We visualize the top five 
markers, ranked by combined P-value, for each cluster in Figure 4d,e.

To identify markers differentially expressed between the beta cell popu-
lations, we used the same integrated differential expression procedure, but 
limited our analysis to only the two beta cell populations. We used the top 
100 differentially expressed markers, ranked by integrated p-value, as input 
for gene ontology enrichment as performed using EnrichR69.

Comparison to other batch correction methods. We compared our alignment 
method to both ComBat48 and limma49. For each pair of data sets, we first 
combined the UMI count matrices and scaled and normalized the combined 
expression matrix. For the ComBat comparisons, we performed batch correc-
tion on the scaled and normalized gene expression data using the ComBat func-
tion from the sva R package, treating the data set as the batch. For the limma 
comparisons, we performed batch correction on the scaled and normalized 
gene expression data using the removeBatchEffect function from the limma R 
package, treating the data set as the batch. All other default parameters were left 
unchanged for both methods. We then performed a principle component analy-
sis to identify sources of variation that accounted for a majority of the variation 
in the corrected data. For the PBMC, hematopoietic progenitor, and pancreas 
data sets we used the first 19, 18, and 21 PCs respectively to visualize with t-SNE 
and to calculate an alignment score. For the two multiple alignment examples 
of human pancreatic islet cells and PBMCs, we used the first 20 PCs.

Validation of pDC vs. DC response to IFNb. Based on our analysis of the Kang 
et al. data set, we observed subsets of genes whose transcriptional response to 
IFNβ stimulation differed between plasmacytoid and conventional DCs. While 
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these changes were observed at the single-cell level, we wished to validate 
these in bulk experiments. We therefore repeated the original experiment, 
where PBMCs from a healthy human donor (ALLCELLS) were cultured with 
RPMI medium supplemented with 10% FBS and stimulated for 6 h with IFNβ  
(100 U/ml, PBL Assay Science), with a subset of cells left unexposed to the 
stimulation as a control. After stimulation, we sorted pure populations of pDCs 
(20,000) and cDCs (60,000) based on the following panel of standard antibod-
ies (from BioLegend and BD Pharmingen): CD3 (HIT3a), CD19 (HIB19), 
CD56 (HCD56), CD14 (HCD14), HLA-DR (LN3), CD11c (Bu15) and CD123 
(7G3). pDCs were defined as: CD3−CD19−CD56−CD14−HLA−DR+CD11c− 
CD123+.cDCs were defined as:CD3−CD19−CD56−CD14−HLA-DR+CD11c+. 
Following sorting, we extracted RNA using TRIzol (Invitrogen) and performed 
bulk RNA-seq (three technical replicates per sample) using a version of the 
SMART-Seq2 protocol as previously described70,71.

Life Sciences Reporting Summary. Further information on experimental 
design is available in the Life Sciences Reporting Summary.

Software availability. Software used to generate all analyses in this manuscript 
is publicly available as an R package (https://cran.r-project.org/web/packages/
Seurat/index.html) and included here as Supplementary Software.

Data availability. Full data sets and command lists to reproduce the integra-
tion of stimulated and control PBMCs, and four human pancreatic islet data 
sets are included as Supplementary Data 1–3. The published data used in 
this study can be accessed in the Gene Expression Omnibus under accession 
numbers GSE96583, GSE81682, GSE84133, GSE81076, GSE85241, GSE86469, 
and the ArrayExpress database under accession E-MTAB-5061.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample size was chosen based on the sample size in the publicly available datasets

2.   Data exclusions

Describe any data exclusions. We excluded single cells with low numbers of detected genes or molecules from downstream 
analysis. Cells expressing below 500 genes were removed from the PBMC (Figure 2) and 
inDrop (Figure 4) pancreatic islet datasets. Cells expressing less than 4,000 genes were 
removed from the SMART-Seq2 hematopoietic dataset (Figure 3). 

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

As this was a computational study, we did not verify experimental reproducibility.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Sample randomization was based on the publicly available datasets.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Blinding was based on the publicly available datasets.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Software used to generate all analyses in this manuscript is publicly available as an R package 
(https://cran.r-project.org/web/packages/Seurat/index.html) and included here as 
Supplementary Software. 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

There are no restrictions

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No cell lines were used

b.  Describe the method of cell line authentication used. No cell lines were used

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No cell lines were used

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No cell lines were used

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used in this study

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

No human participants were used in this study
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