
Genomics, in the broad sense, also referred to as func-
tional genomics, aims to characterize the function
of every genomic element of an organism by using
genome-scale assays such as genome sequencing, tran-
scriptome profiling and proteomics1. Genomics arose
as a data-driven science — it operates by discovering
novel properties from explorations of genome-scale data
rather than by testing preconceived models and hypo
theses2. Applications of genomics include finding asso-
ciations between genotype and phenotype3, discovering
biomarkers for patient stratification4, predicting the
function of genes5 and charting biochemically active
genomic regions such as transcriptional enhancers6.

Genomics data are too large and too complex to be
mined solely by visual investigation of pairwise corre-
lations. Instead, analytical tools are required to support
the discovery of unanticipated relationships, to derive
novel hypotheses and models and to make predictions.
Unlike some algorithms, in which assumptions and
domain expertise are hard coded, machine learning
algorithms are designed to automatically detect pat-
terns in data7,8. Hence, machine learning algorithms
are suited to data-driven sciences and, in particular,
to genomics9,10. However, the performance of machine
learning algorithms can strongly depend on how the
data are represented, that is, on how each variable (also
called a feature) is computed. For instance, to classify a
tumour as malign or benign from a fluorescent micro
scopy image, a preprocessing algorithm could detect
cells, identify the cell type and generate a list of cell
counts for each cell type. A machine learning model
would then take these estimated cell counts, which are
examples of handcrafted features, as input features to
classify the tumour. A central issue is that classification
performance depends heavily on the quality and the
relevance of these features. For example, relevant visual
features such as cell morphology, distances between cells

or localization within an organ are not captured in cell
counts, and this incomplete representation of the data
may reduce classification accuracy. Deep learning, a sub-
discipline of machine learning, addresses this issue by
embedding the computation of features into the machine
learning model itself to yield end-to-end models11. This
outcome has been realized through the development
of deep neural networks, machine learning models that
consist of successive elementary operations, which com-
pute increasingly more complex features by taking the
results of preceding operations as input. Deep neural
networks are able to improve prediction accuracy by
discovering relevant features of high complexity, such
as the cell morphology and spatial organization of cells
in the above example.

The construction and training of deep neural net-
works have been enabled by the explosion of data,
algorithmic advances and substantial increases in
computational capacity, particularly through the use
of graphical processing units (GPUs)12. Over the past
7 years, deep neural networks have led to multiple per-
formance breakthroughs in computer vision13–15, speech
recognition16 and machine translation17. Seminal studies
in 2015 demonstrated the applicability of deep neural
networks to DNA sequence data18,19 and, since then,
the number of publications describing the application
of deep neural networks to genomics has exploded.
In parallel, the deep learning community has substan-
tially improved method quality and expanded its reper-
toire of modelling techniques, some of which are already
starting to impact genomics.

Here, we describe deep learning modelling tech-
niques and their existing genomic applications. We
start by presenting four major classes of neural net-
works (fully connected, convolutional, recurrent and
graph convolutional) for supervised machine learning
and explain how they can be used to abstract patterns

Feature
An individual, measurable
property or characteristic of a
phenomenon being observed.

Handcrafted features
Features derived from raw
data (or other features) using
manually specified rules.
Unlike learned features, they
are specified upfront and
do not change during model
training. For example, the
GC content is a handcrafted
feature of a DNA sequence.

Deep learning: new computational
modelling techniques for genomics
Gökcen Eraslan   1,2,5, Žiga Avsec3,5, Julien Gagneur3* and Fabian J. Theis   1,2,4*

Abstract | As a data-driven science, genomics largely utilizes machine learning to capture
dependencies in data and derive novel biological hypotheses. However, the ability to extract new
insights from the exponentially increasing volume of genomics data requires more expressive
machine learning models. By effectively leveraging large data sets, deep learning has transformed
fields such as computer vision and natural language processing. Now , it is becoming the method
of choice for many genomics modelling tasks, including predicting the impact of genetic variation
on gene regulatory mechanisms such as DNA accessibility and splicing.

1Institute of Computational
Biology, Helmholtz Zentrum
München, Neuherberg,
Germany.
2School of Life Sciences
Weihenstephan, Technical
University of Munich,
Freising, Germany.
3Department of Informatics,
Technical University of
Munich, Garching, Germany.
4Department of Mathematics,
Technical University of
Munich, Garching, Germany.
5These authors contributed
equally: Gökcen Eraslan,
Žiga Avsec.

*e-mail: gagneur@
in.tum.de; fabian.theis@
helmholtz-muenchen.de

https://doi.org/10.1038/
s41576-019-0122-6

REvIEwS

Nature Reviews | Genetics

http://orcid.org/0000-0001-9579-2909
http://orcid.org/0000-0002-2419-1943
mailto:gagneur@
in.tum.de
mailto:gagneur@
in.tum.de
mailto:fabian.theis@helmholtz-muenchen.de
mailto:fabian.theis@helmholtz-muenchen.de
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1038/s41576-019-0122-6

common in genomics. Next, we describe multitask
learning and multimodal learning, two modelling tech-
niques suited to integrating multiple data sets and data
types. We then discuss transfer learning, a technique
that enables rapid development of new models from
existing ones, and techniques to interpret deep learning
models, which are both crucial for genomics. We finish
with a discussion of two unsupervised learning tech-
niques, autoencoders and generative adversarial networks
(GANs), which first found application in single-cell
genomics. To facilitate the adoption of deep learning by
the genomics community, we provide pointers to code
that ease rapid prototyping. For further background
on deep learning, we refer readers to the deep learning
textbook11. As complementary reading, we recommend
a hands-on primer20 and several reviews that provide a
broader perspective on deep learning, target computa-
tional biologists and cover applications of deep learning
beyond genomics21–25.

Supervised learning
The goal of supervised learning is to obtain a model
that takes features as input and returns a prediction for
a so-called target variable. An example of a supervised
learning problem is one that predicts whether an intron is
spliced out or not (the target) given features on the RNA
such as the presence or absence of the canonical splice
site sequence, the location of the splicing branchpoint
or intron length (FIg. 1). Training a machine learning
model refers to learning its parameters, which typically
involves minimizing a loss function on training data
with the aim of making accurate predictions on unseen
data (BoX 1).

Complex dependencies can be modelled with deep
neural networks. For many supervised learning prob-
lems in computational biology, the input data can be rep-
resented as a table with multiple columns, or features,
each of which contains numerical or categorical data that
are potentially useful for making predictions. Some input
data are naturally represented as features in a table (such
as temperature or time), whereas other input data need
to be first transformed (such as DNA sequence into k-mer
counts) using a process called feature extraction to fit a
tabular representation. For the intron-splicing prediction
problem, the presence or absence of the canonical splice
site sequence, the location of the splicing branchpoint
and the intron length can be preprocessed features col-
lected in a tabular format. Tabular data are standard for a
wide range of supervised machine learning models, rang-
ing from simple linear models, such as logistic regression8,
to more flexible nonlinear models, such as neural net-
works and many others26–29. Logistic regression is a
binary classifier, that is, a supervised learning model
that predicts a binary target variable. Specifically, logistic
regression predicts the probability of the positive class by
computing a weighted sum of the input features mapped
to the [0,1] interval using the sigmoid function, a type of
activation function. The parameters of logistic regression,
or other linear classifiers that use different activation
functions, are the weights in the weighted sum. Linear
classifiers fail when the classes, for instance, that of an
intron spliced out or not, cannot be well discriminated
with a weighted sum of input features (FIg. 1a).

To improve predictive performance, new input fea
tures can be manually added by transforming or com-
bining existing features in new ways, for example, by

In
tr

on
 le

ng
th

A
ct

iv
at

io
n

2

Branchpoint
distance

Activation 1

1 — spliced

0 — unspliced

Input Output
Input OutputHidden layers

RNA
features

b Multilayer neural networka Single-layer neural network (logistic regression)

Fully
connected
layer

AG

Fig. 1 | neural networks with hidden layers used to model nonlinear dependencies. a | Shown is an example of splice
site classification based on two RNA features. Depicted is a single-layer neural network with sigmoid activation function,
which corresponds to logistic regression. It predicts the probability of the output being class 1 using a weighted sum
(also called linear combination) of the input that is mapped to the [0,1] interval with a sigmoid function. In this example,
the aim is to discriminate spliced-out from not-spliced-out introns as a function of the length of the intron and of the
distance of the branchpoint to the acceptor site. If either the intron length or the branchpoint distance is too short or
too long, splicing will not occur. Hence, linear combinations of these two features, as implemented in logistic regression,
cannot separate the spliced (blue) from unspliced (orange) data points. b | Neural networks with intermediate layers, also
called hidden layers, transform the inputs using intermediate nonlinear transformations into a space where the classes
become linearly separable. The depicted layers are said to be fully connected because every neuron receives input from
all neurons of the upstream layer. Deep neural networks are neural networks with many hidden layers.

End-to-end models
Machine learning models
that embed the entire
data-processing pipeline to
transform raw input data into
predictions without requiring
a preprocessing step.

Deep neural networks
A wide class of machine
learning models with a design
that is loosely based on
biological neural networks.

Fully connected
Referring to a layer
that performs an affine
transformation of a vector
followed by application
of an activation function to
each value.

Convolutional
Referring to a neural network
layer that processes data stored
in n-dimensional arrays, such
as images. The same fully
connected layer is applied to
multiple local patches of the
input array. When applied to
DNA sequences, a convolutional
layer can be interpreted as a
set of position weight matrices
scanned across the sequence.

Recurrent
Referring to a neural network
layer that processes sequential
data. The same neural network
is applied at each step of the
sequence and updates a
memory variable that is
provided for the next step.

Graph convolutional
Referring to neural networks
that process graph-structured
data; they generalize
convolution beyond regular
structures, such as DNA
sequences and images, to
graphs with arbitrary
structures. The same neural
network is applied to each
node and edge in the graph.

Autoencoders
Unsupervised neural networks
trained to reconstruct the input.
One or more bottleneck layers
have lower dimensionality than
the input, which leads to
compression of data and forces
the autoencoder to extract
useful features and omit
unimportant features in the
reconstruction.

Generative adversarial
networks
(GANs). Unsupervised learning
models that aim to generate
data points that are
indistinguishable from the
observed ones.

www.nature.com/nrg

R e v i e w s

taking powers or pairwise products. Neural networks use
hidden layers to learn these nonlinear feature transforma-
tions automatically. Each hidden layer can be thought of
as multiple linear models with their output transformed
by a nonlinear activation function, such as the sigmoid
function or the more popular rectified-linear unit (ReLU).
Together, these layers compose the input features into
relevant complex patterns, which facilitates the task of
distinguishing two classes (FIg. 1b). Deep neural networks
use many hidden layers, and a layer is said to be fully con-
nected when each neuron receives inputs from all neu-
rons of the preceding layer. Neural networks are typically
trained using stochastic gradient descent, an algorithm

suited to training models on very large data sets (BoX 1).
Implementation of neural networks using modern deep
learning frameworks enables rapid prototyping with
different architectures and data sets (BoX 2).

Fully connected neural networks have been used for a
number of genomics applications, which include predict-
ing the percentage of exons spliced in for a given sequence
from sequence features such as the presence of binding
motifs of splice factors or sequence conservation30,31; pri-
oritizing potential disease-causing genetic variants32; and
predicting cis-regulatory elements in a given genomic
region using features such as chromatin marks, gene
expression and evolutionary conservation33,34. Many of

Target
The desired output used to
train a supervised model.

Loss function
A function that is optimized
during training to fit machine
learning model parameters. In
the simplest case, it measures
the discrepancy between
predictions and observations.
In the case of quantitative
predictions such as regression,
mean-squared error loss is
frequently used, and for binary
classification, the binary
cross-entropy, also called
logistic loss, is typically used.

k-mer
Character sequence of a
certain length. For instance,
a dinucleotide is a k-mer for
which k = 2.

Logistic regression
A supervised learning
algorithm that predicts the
log-odds of a binary output
to be of the positive class as
a weighted sum of the input
features. Transformation of
the log-odds with the sigmoid
activation function leads to
predicted probabilities.

Sigmoid function
A function that maps real
numbers to [0,1], defined as
1/(1 + e −x).

Activation function
A function applied to an
intermediate value x within
a neural network. Activation
functions are usually nonlinear
yet very simple, such as
the rectified-linear unit or the
sigmoid function.

Regularization
A strategy to prevent
overfitting that is typically
achieved by constraining the
model parameters during
training by modifying the loss
function or the parameter
optimization procedure.
For example, the so-called L2
regularization adds the sum
of the squares of the model
parameters to the loss function
to penalize large model
parameters.

Hidden layers
Layers are a list of artificial
neurons that collectively
represents a function that take
as input an array of real
numbers and returns an array
of real numbers corresponding
to neuron activations. Hidden
layers are between the input
and output layers.

Box 1 | training neural networks for supervised learning

Data partitioning and prediction goal
a supervised learning data set consists of input–target pairs split into three distinct sets (see the figure, part a): one for
optimizing the parameters of the model (training set), one for evaluating the model performance (validation set) and one
for the final assessment of the best developed model (test set). During the model development phase, one only has access
to the training and validation set. the goal is to develop a model with the most accurate predictions on the test set.
The accuracy of predictions is measured by different evaluation metrics such as the Pearson correlation coefficient or
spearman correlation coefficient for regression, area under the receiver operator curve for balanced binary classification
or area under the precision-recall curve for imbalanced binary classification157. we note that the validation set and test
set should be carefully chosen to represent truly unseen samples. For DNa-based models, this is typically implemented
by leaving out complete chromosomes or all measurements in new cell types rather than randomly sampling the regions
from the genome.

Fitting the parameters using the training set
Parameters of the neural network are first randomly initialized and then iteratively refined using a method called the
stochastic gradient descent or its variations158,159. specifically, small random subsets, so-called batches, of input–target
pairs of the training data set are iteratively used to make small updates on model parameters in trying to minimize the loss
function between the predicted values and the observed targets (see the figure, part b). this minimization is performed by
using the gradient of the loss function computed using the backpropagation algorithm160,161. There are two main benefits
to taking only a small random subset of the training set at each optimization step rather than the full training set. First, the
algorithm requires a constant amount of memory regardless of the data set size, which allows models to be trained on
data sets much larger than the available memory. second, the random fluctuations between batches were demonstrated
to improve the model performance by regularization162,163. As operations in neural networks including backpropagation
involve matrix operations, graphical processing units (GPUs) can massively parallelize those operations and hence speed
up model training by up to two orders of magnitude compared with normal central processing units12. in practice,
specifying and training neural networks are achieved through the use of deep learning frameworks (BoX 2).

choosing the hyperparameters using the validation set
the training process is monitored by regularly evaluating the loss or the evaluation metric on the validation data
set (see the figure, part c). when the metric stops improving or even starts degrading, training is stopped as the
model starts to overfit the data. to improve the model performance on the validation data set, the modeller can
adjust different hyperparameters, such as the number of layers of the network or batch size, and train a new model.
This loop of experimenting with different hyperparameters can be automated using a simple random search164 or other
hyperparameter optimization techniques165–168. Finally, after the modeller is satisfied with the performance on the
validation set, the generalization performance of the best model or an ensemble of best models is evaluated on a
completely separate test set.

Loss (,)
Parameter
update

Batch i

Inputs Targets

Observed Predicted

Training

Validation

Lo
ss

Number of parameter updates

Model

Input

Training
set

Validation
set

Test set

. . .
. . .

a Data b Parameter update c Monitoring

We refer interested readers to the deep learning book for more details11.

Nature Reviews | Genetics

R e v i e w s

these methods report improved predictive performance
over methods such as linear regression, decision trees or
random forests. However, it is important to note that,
in many problems with tabular data, other methods
such as gradient-boosted decision trees often outper-
form fully connected neural networks, as can be seen
from the results of Kaggle machine learning competi-
tions. Nevertheless, fully connected layers constitute an
essential building block in the deep learning toolbox and
can be effectively combined with other neural network
layers, such as convolutional layers.

Convolutions discover local patterns in sequential
data. Local dependencies in spatial and longitudinal
data must be taken into account for effective predictions.
For example, shuffling a DNA sequence or the pixels of
an image severely disrupts informative patterns. These
local dependencies set spatial or longitudinal data apart

from tabular data, for which the ordering of the features
is arbitrary. Consider the problem of classifying genomic
regions as bound versus unbound by a particular tran-
scription factor, in which bound regions are defined as
high-confidence binding events in chromatin immuno
precipitation following by sequencing (ChIP–seq)
data35–39. Transcription factors bind to DNA by recog-
nizing sequence motifs. A fully connected layer based on
sequence-derived features, such as the number of k-mer
instances or the position weight matrix (PWM) matches in
the sequence40,41, can be used for this task. As k-mer or
PWM instance frequencies are robust to shifting motifs
within the sequence, such models could generalize well
to sequences with the same motifs located at different
positions. However, they would fail to recognize pat-
terns in which transcription factor binding depends
on a combination of multiple motifs with well-defined
spacing. Furthermore, the number of possible k-mers
increases exponentially with k-mer length, which poses
both storage and overfitting challenges.

A convolutional layer is a special form of fully con-
nected layer in which the same fully connected layer
is applied locally, for example, in a 6 bp window, to all
sequence positions. This approach can also be viewed
as scanning the sequence using multiple PWMs42–44, for
example, for transcription factors GATA1 and TAL1
(FIg. 2a,b). By using the same model parameters across
positions, the total number of parameters is drastically
reduced, and the network is able to detect a motif at
positions not seen during training. Each convolutional
layer scans the sequence with several filters (FIg. 2b) by
producing a scalar value at every position, which quanti-
fies the match between the filter and the sequence. As in
fully connected neural networks, a nonlinear activation
function (typically ReLU) is applied at each layer (FIg. 2c).
Next, a pooling operation is applied, which aggregates
the activations in contiguous bins across the positional
axis, typically taking the maximal or average activation
for each channel (FIg. 2d). Pooling reduces the effective
sequence length and coarsens the signal. The subsequent
convolutional layer composes the output of the previ-
ous layer and is able to detect whether a GATA1 motif
and TAL1 motif were present at some distance range
(FIg. 2e,f). Finally, the output of the convolutional layers
can be used as input to a fully connected neural network
to perform the final prediction task (FIg. 2 g,h). Hence,
different types of neural network layers (for example,
fully connected and convolutional) can be combined
within a single neural network.

Three pivotal methods, DeepBind18, DeepSEA19 and
Basset45, were the first convolutional neural networks
(CNNs) applied to genomics data. In DeepBind, multiple
single-task models (the median number of parameters
was 1,586) were trained to predict binarized in vitro and
in vivo binding affinities (that is, bound or not bound)
of a transcription factor and the in vitro binding affin-
ity of an RNA-binding protein (RBP). The method
consistently performed better than existing non-deep
learning approaches. The DeepSEA model (52,843,119
parameters) predicted the presence or absence of 919
chromatin features, including transcription factor bind-
ing, DNA accessibility and histone modification given

Box 2 | example code for training neural networks

Much of the success of deep learning can be attributed to deep learning frameworks such
as Keras, tensorFlow102 or Pytorch101. Deep learning frameworks are software libraries that
implement the operations required for building and training neural networks, including
matrix multiplication, convolution and automatic differentiation. this enables users to
specify the model architecture by composing multiple building blocks — layers — without
having to manually derive the gradients required during training (BoX 1). Below is an
example that implements the architectures from Figures 1 and 2 using Keras.

import keras.layers as kl

from keras.models import Sequential

Fully connected model architecture (Figure 1)

model = Sequential([

 kl.Dense(3, activation='relu', input_shape=(2,)),

 kl.Dense(2, activation='relu'),

 kl.Dense(1, activation='sigmoid')])

Convolutional neural network architecture (Figure 2)

model = Sequential([

 kl.Conv1D(2, activation='relu', input_shape=(4, 30), padding='same'),

 kl.MaxPool(6),

 kl.Conv1D(3, activation='relu', padding='same'),

 kl.GlobalMaxPool(),

 kl.Dense(1, activation='sigmoid')])

Specify optimizer, loss and evaluation metric

model.compile(optimizer='adam',

 loss='binary_crossentropy',

 metrics=['accuracy'])

Load the dataset

x, y = load_dataset(...)

Train the model for 10 epochs

model.fit(x, y, epochs=10)

Thanks to these frameworks, users can focus on designing the model architecture
without having to manually derive the optimization procedure, which makes prototyping
new model architectures easy and decouples the model choice from the optimization
algorithm. Furthermore, the frameworks enable training of models on GPUs without
using extra code. Moreover, as the specification of the architecture is standardized,
models and model components can be easily exchanged.

we refer the reader to DragoNN for end-to-end examples of how to implement, train,
evaluate and interpret convolutional neural network models based on DNA sequence
using Keras.

Rectified-linear unit
(ReLU). Widely used activation
function defined as max(0, x).

Neuron
The elementary unit of a neural
network. An artificial neuron
aggregates the inputs from
other neurons and emits an
output called activation. Inputs
and activations of artificial
neurons are real numbers. The
activation of an artificial neuron
is computed by applying a
nonlinear activation function to
a weighted sum of its inputs.

www.nature.com/nrg

R e v i e w s

https://www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-competitions
https://www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-competitions
https://keras.io/
http://pytorch.org
https://kundajelab.github.io/dragonn/tutorials.html

a 1,000 bp sequence. Basset (4,135,064 parameters)
predicted 164 binarized DNA accessibility features
(for example, as accessible or inaccessible) given a 600 bp
sequence. Both methods performed substantially better
than the k-mer-based approach gkm-SVM41.

Since their initial applications, CNNs have been
applied to predict various molecular phenotypes on the
basis of DNA sequence alone and have become the new
state-of-the-art models. Applications include classifying
transcription factor binding sites46 and predicting mol
ecular phenotypes such as chromatin features47, DNA
contact maps48, DNA methylation49,50, gene expression51,
translation effiency52, RBP binding53–55 and microRNA
(miRNA) targets56. In addition to predicting molecular
phenotypes from the sequence, CNNs have been suc-
cessfully applied to more technical tasks traditionally
addressed by handcrafted bioinformatics pipelines. For
example, they have been utilized to predict the specific-
ity of guide RNA57, denoise ChIP–seq58, enhance Hi-C
data resolution59, predict the laboratory of origin from
DNA sequences60 and call genetic variants61,62.

CNNs have also been employed to model long-range
dependencies in the genome47. Although interacting

regulatory elements may be distantly located on the
unfolded linear DNA sequence, these elements are often
proximal in the actual 3D chromatin conformation.
Hence, modelling molecular phenotypes from the lin-
ear DNA sequence, albeit a crude approximation of the
chromatin, can be improved by allowing for long-range
dependencies and allowing the model to implicitly
learn aspects of the 3D organization, such as promoter–
enhancer looping. In Basenji47 this is achieved by using
dilated convolutions, which enabled a receptive field of
32 kb to be achieved. Dilated convolutions have also
allowed splice sites to be predicted from sequence using
a receptive field of 10 kb, thereby enabling the integra-
tion of genetic sequence across distances as long as
typical human introns63.

Recurrent neural networks model long-range depend-
encies in sequences. Different types of neural net-
work can be characterized by their parameter-sharing
schemes. For example, fully connected layers have no
parameter sharing (FIg. 3a), whereas convolutional lay-
ers impose translational invariance by applying the
same filters at every position of their input (FIg. 3b).

Linear regression
A supervised learning algorithm
that predicts the output as a
weighted sum of the input
features.

Decision trees
Supervised learning algorithms
in which the prediction is made
by making a series of decisions
of type ‘is feature i larger than
x’ (internal nodes of the tree)
and then predicting a constant
value for all points satisfying
the same decisions series
(leaf nodes).

Random forests
Supervised learning algorithms
that train and average the
predictions of many decision
trees.

C
G
T
G
T
C
T
T
A

A C G T

A C G T

T
C
T
C
C
T
C
C
A
A
A
C
A
G
A
T
G
C
A
C
T

b
Convolution

d
Max

pooling

e
Convolution

a
Input

c
Activation

f
Activation

h
Fully

connected

TAL1

GATA1+TAL1

GATA1

TA
L1

G
A

TA
1

Channels

Positions

GATA
1

TA
L1

GATA
1

TA
L1

GATA
1

TA
L1

GATA
1

TA
L1

GATA
1

TA
L1

GATA
1+TA

L1

Negative Positive
0

TAL1GATA1

g
Global

max
pooling

Filters

Filters

GATA
1+TA

L1

Fig. 2 | Modelling transcription factor binding sites and spacing with convolutional neural networks. The depicted
convolutional neural network predicts the binding affinity of the TAL1–GATA1 transcription factor complex. a | One-hot
encoded representation of the DNA sequence. b | The first convolutional layer scans the input sequence using filters, which
are exemplified by position weight matrices of the GATA1 and TAL1 transcription factors. c | Negative values are truncated
to 0 using the rectified-linear unit (ReLU) activation function. d | In the max pooling operation, contiguous bins of the
activation map are summarized by taking the maximum value for each channel in each bin. e | The second convolutional
layer scans the sequence for pairs of motifs and for instances of individual motifs. f | Similarly to that of the first convolution,
ReLU activation function is applied. g | The maximum value across all positions for each channel is selected. h | A fully
connected layer is used to make the final prediction.

Nature Reviews | Genetics

R e v i e w s

Recurrent neural networks (RNNs)64,65 are an alterna-
tive to CNNs for processing sequential data, such as
DNA sequences or time series, that implement a differ-
ent parameter-sharing scheme. RNNs apply the same
operation to each sequence element (FIg. 3c). The opera-
tion takes as input the memory of the previous sequence
element and the new input. It updates the memory and
optionally emits an output, which is either passed on
to subsequent layers or is directly used as model pre-
dictions. By applying the same model at each sequence
element, RNNs are invariant to the position index in the
processed sequence. For example, an RNN could detect
an open reading frame in a DNA sequence regardless
of the position in the sequence. This task requires the
recognition of a certain series of inputs, such as the start
codon followed by an in-frame stop codon. The main
advantage of RNNs over CNNs is that they are, in theory,
able to carry over information through infinitely long
sequences via memory. Furthermore, RNNs can natu
rally process sequences of widely varying length, such
as mRNA sequences. However, recent systematic
comparisons show that CNNs combined with various
tricks (such as dilated convolutions) are able to reach
comparable or even better performances than RNNs on
sequence-modelling tasks, such as audio synthesis and
machine translation66. Moreover, because RNNs apply a
sequential operation, they cannot be easily parallelized
and are hence much slower to compute than CNNs.

In genomics, RNNs have been used to aggregate
the outputs of CNNs for predicting single-cell DNA
methylation states50, RBP binding67, transcription fac-
tor binding and DNA accessibility68,69. RNNs have also

found applications in miRNA biology: deepTarget70 per-
formed better than existing models at predicting miRNA
binding targets from mRNA–miRNA sequence pairs,
and deepMiRGene71 better predicted the occurrence of
precursor miRNAs from the mRNA sequence and its
predicted secondary structure than existing methods
that use handcrafted features. Base calling from raw
DNA-sequencing data is another prediction task for
which RNNs have been applied. DeepNano72 accurately
predicted base identity from changes in electric current
measured by the Oxford Nanopore MinION sequencer73.
Despite these numerous applications of RNNs, we note
that there is a lack of systematic comparison of recur-
rent and convolutional architectures for the common
sequence-modelling tasks in genomics.

Graph-convolutional neural networks model depend-
encies in graph-structured data. Graph-structured
data, including protein–protein interaction networks
and gene regulatory networks, are ubiquitous in geno
mics74,75. Graph convolutional neural (GCN) networks76–79
(FIg. 3d) use the individual features of nodes in a graph
and the node connectivity to solve machine learning
tasks on graphs. GCNs sequentially apply multiple graph
transformations (layers), whereby each graph transfor-
mation aggregates features from the neighbouring nodes
or edges in a nonlinear manner and represents nodes or
edges with a new set of features. Tasks that GCNs can
be trained for include node classification80,81, unsuper-
vised node embedding (which aims to find informa-
tive, low-dimensional representation of nodes)80, edge
classification and graph classification79.

Parameterized information flow Link Node in the neural network (scalar or tensor)

Network type Fully connected Convolutional Recurrent Graph convolutional

a b c d

Input
example

Predefined features such as
number of k-mer matches,
total conservation

• DNA sequence
• Amino acid sequence
• Image

• DNA sequence
• Amino acid sequence
• Time series measurements

• Protein–protein interaction network
• Citation network
• Protein structure

Invariance – Translation Time Node index permutation

Input

Output

Parameters

Fig. 3 | neural network layers and their parameter-sharing schemes. Neural network architectures can be categorized
into four groups based on their connectivity and parameter-sharing schemes. a | Fully connected layers assume that
input features do not have any particular ordering and hence apply different parameters across different input features.
b | Convolutional layers assume that local subsets of input features, such as consecutive bases in DNA , can represent
patterns. Therefore, the connectivity and parameter-sharing pattern of convolutional layers reflect locality. c | Recurrent
layers assume that the input features should be processed sequentially and that the sequence element depends on all the
previous sequence elements. At each sequence element, the same operation is applied (blue and orange arrows), and
the information from the next input sequence element is incorporated into the memory (orange arrows) and carried over.
d | Graph convolutional networks assume that the structure of the input features follows the structure of a known graph.
The same set of parameters is used to process all the nodes and thereby imposes invariance to node ordering. By exploiting
the properties of the raw data, convolutional neural networks, recurrent neural networks and graph convolutional layers
can have drastically reduced numbers of parameters compared with fully connected layers while still being able to
represent flexible functions. The same colours indicate shared parameters, and arrows indicate the flow of information.
Full lines indicate specific ordering or relationships between features represented as nodes (parts a–d).

Gradient-boosted decision
trees
Supervised learning algorithms
that train multiple decision
trees in a sequential manner;
at each time step, a new
decision tree is trained on the
residual or pseudo-residual
of the previous decision tree.

Position weight matrix
(PWM). A commonly used
representation of sequence
motifs in biological sequences.
It is based on nucleotide
frequencies of aligned
sequences at each position
and can be used for identifying
transcription factor binding
sites from DNA sequence.

Overfitting
The scenario in which the
model fits the training set very
well but does not generalize
well to unseen data. Very
flexible models with many
free parameters are prone to
overfitting, whereas models
with many fewer parameters
than the training data do
not overfit.

www.nature.com/nrg

R e v i e w s

GCNs have been applied to a number of biological
and chemical problems. For instance, one method used
an unsupervised approach to derive new features of pro-
teins from protein–protein interaction networks in an
unsupervised manner, and these features were then used
to predict protein function in different tissues82. GCNs
have also been used for modelling polypharmacy side
effects83. In chemistry, graph convolutions have been
successfully used to predict various molecular properties
including solubility, drug efficacy and photovoltaic effi-
ciency84,85. Genomic applications of GCNs include pre-
dicting binarized gene expression given the expression
of other genes86 or classification of cancer subtypes87.
GCNs provide promising tools for exploiting structural
patterns of graphs for supervised and unsupervised
machine learning problems, and we expect to see more
genomics applications in the future.

Sharing information across tasks and integrating
data modalities. Genomic data often contain correlated
measurements of related biological activities. Correlated
measurements can occur within a single data type (such
as the expression of co-regulated genes) or across dif-
ferent data types (such as ChIP–seq peaks and DNase I
hypersensitive sites sequencing (DNase-seq) peaks) and
give rise to related prediction tasks.

Consider an example in which we would like to pre-
dict transcription factor binding affinity for multiple
transcription factors. Instead of building a single-task
model for each prediction task (FIg. 4a), a multitask model
can jointly predict binding of multiple transcription
factors (FIg. 4b). In such models, the majority of layers
are shared and branch out to task-specific layers at the
end (FIg. 4b). Owing to co-binding and common protein
domains of the modelled transcription factors, using the
same layers to extract complex sequence features across
multiple transcription factors might improve the predic-
tive performance and require less data per transcription
factor. Moreover, by sharing the computation between
tasks, multitask models can make predictions faster than
single-task models can.

In multitask models, the overall loss function is simply
the sum of the losses for each task. When losses are very
different across tasks, a weighted sum can be used to bal-
ance the losses88. Training multitask models can be chal-
lenging, as the network needs to simultaneously optimize
multiple losses and hence make trade-offs. For example,
if class imbalance varies greatly across tasks, the network
might successfully learn only the well-balanced classes
and completely ignore the difficult imbalanced classes by
always predicting the majority class. Various strategies
have been proposed to tackle this issue88–91. For example,
GradNorm88 adopts task weights during training that
ensure the backpropagated gradients corresponding to
different tasks will be of equal magnitude. In genom-
ics, multitask models have been successfully used to
simultaneously predict multiple molecular phenotypes
such as those for transcription factor binding, different
histone marks, DNA accessibility and gene expression in
different tissues19,45,47,51.

Analogously to multitask models, deep neural net-
works can be easily extended to take multiple data

modalities as inputs in order to leverage complementary
information between them. A simple way to integrate
multiple data modalities is to concatenate features from
each data set (often referred to as early integration). Such
concatenation might not be possible with raw data when
the data modalities are very different (such as a DNA
sequence combined with an image or gene expression).
Neural networks enable multiple data modalities to be
integrated by first processing each data modality using
dedicated layers, concatenating the outputs of dedi-
cated layers and then using further layers to integrate
the features extracted from each data modality (FIg. 4c).
This approach, also known as intermediate integration,
enables the most suitable dedicated layers to be used for
each data modality and can hence extract more predic-
tive features. Both early integration and intermediate
integration approaches (individually or in combination)
have been used by different neural network models in
genomics. For example, DNA sequence, gene expres-
sion and chromatin accessibility have been integrated
to predict transcription factor binding across cell types69.
In addition, an RNA sequence has been integrated with
RNA secondary structure55 or distances to key genomic
landmarks such as splice sites54 to predict in vivo affinity
of RBPs. Another example is the prediction of the patho
genicity of missense variants by integrating amino acid
sequences with multiple conservation scores92. We refer
the reader to Zitnik et al.93 for more information on data
integration with machine learning models.

Training models on small data sets with transfer learn-
ing. In the scenario in which data are scarce, training
a model from scratch might not be feasible. Instead,
the model can be initialized with the majority of para
meters from another model trained on a similar task.
This approach is called transfer learning94 and can be
viewed as incorporating prior knowledge into the model
(FIg. 4d). In the simplest case, in which the parameters of
the source model are not modified during training, this
approach can be seen as building a separate model on top
of features extracted by the source model. Transferred
models can learn new tasks more rapidly, require less
data to train and generalize better to unseen data than
models trained from scratch using randomly initial-
ized parameters95. In biological image analysis, pre-
trained models from the ImageNet competition96 were
successfully adopted to classify skin lesions97, perform
morphological profiling98 and analyse in situ hybridi-
zation images99,100. In genomics, the utility of transfer
learning has been demonstrated for sequence-based
predictive models of chromatin accessibility45. In this
study, researchers trained the multitask Basset model
for predicting binary chromatin accessibility profiles
of 149 cell types. They then trained single-task models of
chromatin accessibility in 15 other cell types using
parameters from the multitask model for initialization.
The predictive performance was greater for models
initialized with transferred parameters than for mod-
els initialized with random parameters45. We note that
extensive evaluations of how many parameters to share
and which models to use for different tasks are still
lacking and will require further investigation.

Filters
Parameters of a convolutional
layer. In the first layer of a
sequence-based convolutional
network, they can be
interpreted as position weight
matrices.

Pooling operation
A function that replaces the
output at a certain location
with a summary statistic of the
nearby outputs. For example,
the max pooling operation
reports the maximum output
within a rectangular
neighbourhood.

Channel
An axis other than one of the
positional axes. For images, the
channel axis encodes different
colours (such as red, green and
blue), for one-hot-encoded
sequences (A: [1, 0, 0, 0],
C: [0, 1, 0, 0] and so on), it
denotes the bases (A, C, G
and T), and for the output of the
convolutions, it corresponds to
the outputs of different filters.

Dilated convolutions
Filters that skip some values
in the input layers. Typically,
each subsequent convolutional
layer increases the dilation by
a factor of two, thus achieving
an exponentially increasing
receptive field with each
additional layer.

Receptive field
The region of the input that
affects the output of a
convolutional neuron.

Memory
An array that stores the
information of the patterns
observed in the sequence
elements previously processed
by a recurrent neural network.

Nature Reviews | Genetics

R e v i e w s

Chromatin accessibility

Inputs Model Outputs

DNA

DNA

DNA

DNA

TGATCGAGGACGA
GTAGCTAGCTAGT

CGTGAGTTTGCAT

TGATCGAGGACGA
GTAGCTAGCTAGT

CGTGAGTTTGCAT
Single-task

Multitask

b

TGATCGAGGACGA
GTAGCTAGCTAGT

CGTGAGTTTGCAT

Transfer learning

d

Source model

Target model

TGATCGAGGACGA
GTAGCTAGCTAGT

CGTGAGTTTGCAT

Multimodal

c

TGATCGAGGACGA
GTAGCTAGCTAGT

CGTGAGTTTGCAT

DNAa

Transfer
parameters

New parameters

www.nature.com/nrg

R e v i e w s

To realize the full potential of transfer and multitask
learning, trained models must be easily shared. In the
fields of computer vision and natural language process-
ing, trained models are shared through repositories called
model zoos and are available for popular machine learning
frameworks, for example PyTorch model zoos101, Keras
model zoos and Tensorflow model zoos102. We and others
recently developed Kipoi, a model zoo for genomics103,
to address the lack of a platform for exchanging models.
Kipoi contains over 2,000 predictive models for genomics
and allows the user to access, apply and interpret these
predictive models through a unified interface as well as
score the effect of single-nucleotide variants for a subset
of sequence-based models. As the size and the number of
data sets grow and predictive models become more accu-
rate and essential, we expect to see a greater emphasis
on model distribution, similar to the improvement
in data and software sharing over the past decade.

Explaining predictions
Although deep neural networks are not designed to
highlight interpretable relationships in data or to guide
the formulation of mechanistic hypotheses, they can
nevertheless be interrogated for these purposes a pos-
teriori104. We refer to these interrogations of the models
as model interpretation. In simple models such as linear
models, the parameters of the model often measure the
contribution of an input feature to prediction. Therefore,
they can be directly interpreted in cases where the
input features are relatively independent. By contrast,
the parameters of a deep neural network are difficult
to interpret because of their redundancy and nonlinear
relationship with the output. For example, although the
CNN presented in FIg. 2 may be interpreted as multiple
PWMs scanning the sequence, the filters representing
the PWM in the first layer typically only represent parts
of the motifs. The reason for this phenomenon is that
individual filters are never forced to learn complete
motifs. Rather, the network as a whole can detect motifs
by assembling multiple filters in the downstream layers.

Feature importance scores interrogate input–output
relationships. In complex models, it is imperative to
inspect parameters indirectly by probing the input–
output relationships for each predicted example.
Feature importance scores, also called attribution scores,
relevance scores or contribution scores, can be used for
this purpose. They highlight the parts of a given input
that are most influential for the model prediction and

thereby help to explain why such a prediction was made
(FIg. 5a). In DNA sequence-based models, the impor-
tance scores highlight sequence motifs and are hence
widely used in genomics18,45,47. They can also be used to
probe more complex epistatic interactions105. We refer
to feature importance scores as scores generated per
example, and they should not be confused with the fea-
ture importance for supervised models based on tabular
data like those of random forests, which are aggregated
across the entire data set.

Feature importance scores can be divided into two
main categories on the basis of whether they are com-
puted using input perturbations or using backpropagation.
Perturbation-based approaches systematically per-
turb18,19,45,106 the input features and observe the change
in the output (FIg. 5b). For DNA sequence-based mod-
els, the induced perturbation can be, for example, a
single-nucleotide substitution18,19 or an insertion of a regu
latory motif45. The main drawback of perturbation-based
importance scores is the high computational cost, which
becomes notable when the importance scores for the whole
data set need to be computed. For example, a sequence of
1,000 nt requires an additional 3,000 model predictions
to assess the effect of every possible single-nucleotide var-
iant. Backpropagation-based approaches107,108, to the con-
trary, are much more computationally efficient. In these
approaches, importance scores for all the input features
are computed using a single backpropagation pass through
the network (FIg. 5c), and hence they require only twice the
amount of computation as a single prediction. The sim-
plest backpropagation-based importance scores are
saliency maps107 and input-masked gradients108. As deep
learning frameworks support automatic differentiation
(BoX 2), these scores can be efficiently implemented in a
few lines of code.

One issue with saliency maps, input-masked gra-
dients or perturbation-based methods is the so-called
neuron saturation problem. Consider a neural net-
work that classifies a sequence as positive if it observes
a TAL1 transcription factor motif. If there are actu-
ally two TAL1 motifs in the sequence, one of them
could be deleted, and the model prediction would not
change. In the case of perturbation-based gradients or
input-masked gradients, the importance scores would
be low for both TAL1 motifs, as they are individually
not necessary for the prediction. To address this fail-
ure mode, so-called reference-based methods like
DeepLIFT108 and integrated gradients109 were developed.
These methods compare the input features with their
‘reference’ values and thereby avoid the saturation issue.
In the case of DNA sequences, a reasonable reference
value is the dinucleotide-shuffled version of the original
sequence. We note that a rigorous benchmark of fea-
ture importance scores and different reference values in
genomics are currently lacking. Therefore, we recom-
mend trying multiple methods and comparing them
with some well-understood examples or simulated data.

Sequence motif discovery. Motif discovery is an essen-
tial component of the bioinformatics workflow when
regulatory DNA sequences are analysed. Although fea-
ture importance scores are able to highlight the instances

Feature importance scores
The quantification values of
the contributions of features
to a current model prediction.
The simplest way to obtain this
score is to perturb the feature
value and measure the change
in the model prediction:
the larger the change found, the
more important the feature is.

Backpropagation
An algorithm for computing
gradients of neural networks.
Gradients with respect to the
loss function are used to
update the neural network
parameters during training.

Saliency maps
Feature importance scores
defined as the gradient
absolute values of the model
output with respect to the
model input.

Input-masked gradients
Feature importance scores
defined as the gradient of the
model output with respect
to the model input multiplied
by the input values.

Automatic differentiation
A set of techniques, which
consist of a sequence of
elementary arithmetic
operations, used to
automatically differentiate
a computer program.

Fig. 4 | Multitask models, multimodal models and transfer learning. a | Shown is a
single-task model predicting the binding of a single transcription factor (green oval).
b | A multitask model is shown that simultaneously predicts binding for two transcription
factors (green oval and red diamond). There are three submodels depicted: a common
submodel and two task-specific submodels. c | A multimodal model is shown that takes
as input DNA sequence and chromatin accessibility. Each data modality is first processed
using a dedicated submodel, and the outputs are concatenated and processed using the
shared submodel. Parameters of all submodels are trained jointly as shown in both parts b
and c. d | Transfer learning is presented. Parameters of the original model trained on a
large data set (top) are used for initialization for the second model trained on a related
task (target task) but with much less data available (bottom). In this example, the first task
of the source model is similar to the target task (both are ovals); hence, the transferred
submodel may contain features useful for the target task prediction.

◀

Nature Reviews | Genetics

R e v i e w s

https://pytorch.org/docs/stable/torchvision/models.html
https://keras.io/applications/
https://keras.io/applications/
https://github.com/tensorflow/models

of different motifs18,45,47,110, they have so far been used
only to manually inspect individual sequences and not
to perform automated motif discovery. Simply aver-
aging the importance scores across multiple examples
will not yield the desired results because the motif is
not always located at the same position in the input
sequence. Owing to this issue, many studies45,49,50,54 have
derived motifs from sequences by aggregating sequences
in the training set that strongly activated filters of the
first convolutional layer or interpreted filters directly as
motifs52. Recently, a promising approach to aggregate the
importance scores called TF-MoDISco was proposed111.
TF-MoDISco extracts, aligns and clusters the regions of
high importance into sequence motifs. Unlike classical
motif discovery, which relies only on plain sequences,
TF-MoDISco relies on the predictive model to highlight
the important regions within the sequence via feature
importance scores, which guides motif discovery.

Neural networks with interpretable parameters
and activations. An approach termed ‘visible neural
networks’ has recently been proposed with the DCell
model112 to improve the interpretability of internal
neural network activations. The model architecture
of DCell corresponds to the hierarchical organization of
known molecular subsystems within the cell. Nodes in

the neural network correspond to molecular subsystems,
such as signalling pathways or large protein complexes,
and connections between two nodes (systems) are only
permitted if the upstream system (for example, a small
protein complex) is part of the downstream system (such
as a large protein complex). The neurons in the neural
network correspond to known concepts; hence, their
activations and parameters can be interpreted. We note
that this approach is only feasible for tasks in which
the underlying entities and their hierarchical structure
are sufficiently well known; it may not be directly appli-
cable to tasks for which the entities or their hierarchical
structure are generally unknown, as in the case of trans
cription factor binding. It will be interesting to see to
what extent this approach can be applied in the future
to other models and also how it can be combined with
modular modelling approaches (such as ExPecto51) to
tackle predicting and understanding more complex
phenotypes such as disease.

Unsupervised learning
The goal of unsupervised learning is to character-
ize unlabelled data by learning the useful properties
of the data set. Classic unsupervised machine learn-
ing methods include clustering algorithms such as
k-means and dimensionality reduction methods such

CGTGAGTT...
0.9

p(Bound)

Position

...

Negative Positive
Perturbation impact

c Backpropagation-based

TGATCGAGGACGAGCTGCATCG
GTAGCTAGCTAGTCGATGTGCA

CGTGAGTTTGCATAACAACATA

Input

CGTGAGTT...

AGTGAGTT...Perturbation
1

Reference

0.2

0.9
Δ

perturb – reference

A
C
G
T

Predict

Backpropagate

b Perturbation-based

a

Importance scores

Feature importance scores Interpretation method

Fig. 5 | Model interpretation via feature importance scores. a | Feature importance scores highlight parts of the
input most predictive for the output. For DNA sequence-based models, these can be visualized as a sequence logo of
the input sequence, with letter heights proportional to the feature importance score, which may also be negative
(as visualized by letters facing upside down). There are two classes of feature importance scores: perturbation-based
approaches (part b) and backpropagation-based approaches (part c). b | Perturbation-based approaches perturb each
input feature (left) and record the change in model prediction (centre) in the feature importance matrix (right). For DNA
sequences, the perturbations correspond to single base substitutions18. Alternatively , the perturbation matrix can be
visualized as a sequence logo with the letter heights corresponding to the average per-base perturbation impact. c | Backpropagation-
based approaches compute the feature importance scores using gradients107 or augmented gradients such as DeepLIFT108
for the input features with respect to model prediction.

Model architecture
The structure of a neural
network independent of its
parameter values. Important
aspects of model architecture
are the types of layers, their
dimensions and how they are
connected to each other.

k-means
An unsupervised method for
partitioning the observations
into clusters by alternating
between refining cluster
centroids and updating cluster
assignments of observations.

www.nature.com/nrg

R e v i e w s

as principal component analysis, t-distributed stochastic
neighbour embedding (t-SNE) or latent variable models.
Neural networks are able to generalize some of these
approaches. For example, autoencoders113,114,115,116 embed
the data into a low-dimensional space with a hidden
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIg. 6a). This approach forces the network
to extract useful features of data, as the bottleneck layer
makes it infeasible to learn the perfect reconstruction.
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIg. 6b). Principal component analysis is
equivalent to a linear autoencoder117,118,119, in which the
principal components correspond to the representations
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality
reduction method.

Autoencoders have been used to impute missing
data120, extract gene expression signatures121–123 and
detect expression outliers124 in microarray data and bulk
RNA sequencing gene expression data. In the field of

single-cell genomics, autoencoders have been used for
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder
architecture in order to infer a new representation that
improves clustering and visualization of cells from single-
cell RNA sequencing (scRNA-seq) data131. Specific noise
characteristics of scRNA-seq data, such as sparse count
data, are also addressed with tailored loss functions
within the autoencoder framework130.

Neural networks have also greatly contributed to
the toolbox of generative models. Unlike the approaches
described earlier, generative models aim to learn the
data-generating process. Variational autoencoders132
(VAEs) and GANs133 are two powerful generative
approaches that have emerged in the deep learning
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell
and bulk RNA sequencing data to find meaningful pro
babilistic latent representations134–137. These methods

Bottleneck
layer

Loss (,)

Cells

G
en

es
Bo

tt
le

ne
ck

 2

Bottleneck 1

Differentiated
cellsProgenitors

Low High
Expression

Progenitor Differentiated Progenitor Differentiated

Inputa Reconstruction

Encoder Decoder

Decision
boundary

cb

Discriminator

Real or synthetic ?

Noise

Parameter
update

G
en

e
1

Real data

Synthetic data

Gene 2

Generator

Fig. 6 | Unsupervised learning. a | An autoencoder consists of two parts: an encoder and a decoder. The encoder
compresses the input data (depicted as gene expression of differentiating single cells) into a fewer (two shown here)
dimensions in the so-called bottleneck layer. The decoder tries to reconstruct the original input from the compressed
data in the bottleneck layer. Reconstruction accuracy is quantified by the loss function between the original data and
the reconstructed data. Although the pseudotime estimation is not a property of autoencoders, the denoising effect of
reconstruction can make the underlying structure of the data (for example cellular differentiation process) clearer130.
b | The bottleneck layer is a low-dimensional representation of the original input revealing the cell differentiation process.
c | Generative adversarial networks consist of generator and discriminator neural networks that are trained jointly.
The discriminator classifies whether a given data point was drawn from the real data (circles) or whether it was
synthetically generated (triangles). The generator aims to generate realistic samples and thereby tries to deceive the
discriminator into mistakenly classifying synthetic samples as real.

Principal component
analysis
An unsupervised learning
algorithm that linearly projects
data from a high-dimensional
space to a lower-dimensional
space while retaining as much
variance as possible.

t-Distributed stochastic
neighbour embedding
(t-SNE). An unsupervised
learning algorithm that projects
data from a high-dimensional
space to a lower-dimensional
space (typically 2D or 3D) in a
nonlinear fashion while trying
to preserve the distances
between points.

Nature Reviews | Genetics

R e v i e w s

demonstrate that either denoised reconstruction or
low-dimensional representation of the single-cell data
improves commonly performed unsupervised learn-
ing tasks such as visualization and clustering. Another
approach, which uses vector arithmetic with VAE latent
representations, was reported to predict cell type-specific
and species-specific perturbation responses of single
cells138. We note that the performances of VAEs and
other models based on neural networks strongly depend
on the choice of hyperparameters139.

GANs were proposed as a radically different approach
to generative modelling that involves two neural net-
works, a discriminator and a generator network. They
are trained jointly, whereby the generator aims to gen-
erate realistic data points, and the discriminator classi-
fies whether a given sample is real or generated by the
generator (FIg. 6c). As a relatively new method, applica-
tion of GANs is currently rather limited in genomics.
They have been used to generate protein-coding DNA
sequences140 and to design DNA probes for protein
binding microarrays. It has been reported that GANs
are capable of generating sequences that are superior
to those in the training data set, as measured by higher
protein binding affinity141. In the field of single-cell
genomics, GANs have been used to simulate scRNA-seq
data and dimensionality reduction142. Furthermore,
the authors interpreted the internal representation
of GANs through perturbations. In MAGAN143, the
authors addressed the challenging problem of aligning
data sets from different domains, that is, CyTOF data
and scRNA-seq data, using an architecture consisting
of two GANs.

Impact in genomics
Deep learning methods, both supervised and unsuper-
vised, have found various applications in genomics. Here,
we highlight three key areas in which we expect them to
have the largest impact now and in the near future.

Predicting the effect of non-coding variants. Models
that can predict molecular phenotypes directly from
biological sequences can be used as in silico pertur-
bation tools to probe the associations between genetic
variation and phenotypic variation and have emerged
as new methods for quantitative trait loci identification
and variant prioritization. These approaches are of major
importance given that the majority of variants identi-
fied by genome-wide association studies of complex
phenotypes are non-coding144, which makes it chal-
lenging to estimate their effects and contribution to
phenotypes. Moreover, linkage disequilibrium results
in blocks of variants being co-inherited, which creates
difficulties in pinpointing individual causal variants.
Thus, sequence-based deep learning models that can be
used as interrogation tools for assessing the impact of
such variants offer a promising approach to find poten-
tial drivers of complex phenotypes. Examples include
DeepSEA19, Basenji47 and ExPecto51, which predict the
effect of non-coding single-nucleotide variants and short
insertions or deletions (indels) indirectly from the differ-
ence between two variants in terms of transcription fac-
tor binding, chromatin accessibility or gene expression

predictions. Furthermore, state-of-the-art models for
predicting novel splice site creation63 from sequence
or quantitative effects of genetic variants on splicing145
are deep learning models. Additionally, end-to-end
approaches for variant effect predictions are beginning
to appear and have been successfully applied to predict
the pathogenicity of missense variants92 from protein
sequence and sequence conservation data.

Deep learning as a fully data-driven refinement of
bioinformatics tools. Thanks to their flexibility, deep
neural networks can be trained to carry out tasks that
have traditionally been addressed by specific bioinfor-
matics algorithms. Training computer programs instead
of manually programming them has been shown to yield
a significant increase in accuracy in tasks including vari-
ant calling61,62, base calling for novel sequencing techno
logies72, denoising ChIP–seq data58 and enhancing Hi-C
data resolution59. An additional advantage is that such
programs are able to leverage GPUs without the need to
write additional code.

Richer representations to reveal the structure of
high-dimensional data. In addition to using deep
learning as a powerful tool to make accurate predictions,
its use in unsupervised settings has given rise to some
important applications. Unlike other nonlinear dimen-
sionality reduction methods, such as t-SNE, autoencoders
are parametric and can therefore easily be applied to
unseen data with similar distributions to the training
set146. They are highly scalable because the training pro-
cedure only requires a small subset of the data at every
training step (BoX 1), which is particularly important for
fields such as single-cell genomics, in which the num-
ber of training examples can now surpass hundreds of
thousands147. In addition, unsupervised deep learning
techniques can help to characterize data sets for which
it is not trivial to obtain labels, for example, to enable a
data-driven definition of cell identities and states from
scRNA-seq data. Finally, unsupervised methods can
also be used to integrate scRNA-seq data from different
sources129,134,138,143,148, which is increasingly important not
only because of growing data sets for similar tissues but
also because of the generation of the first organ atlases,
such as the Human Cell Atlas project149.

Conclusions and future perspectives
The uptake of deep learning in genomics has resulted
in early applications with both scientific and economic
relevance. Multiple companies and industry research
groups are being founded, often under the broader label
of artificial intelligence, based on the anticipated eco-
nomic impact of genomic deep learning on diagnostics
and drug development and on its easy integration with
imaging data150. In particular, pharmacogenomics may
profit from more efficient and automated identification
of novel regulatory variants in the genome and from
more accurate predictions of drug responses and targets
using epigenomics data151.

Regardless of their quantitative advantages (or dis-
advantages) over alternative methods, some of the
qualitative aspects of deep learning will remain relevant

Latent variable models
Unsupervised models
describing the observed
distribution by imposing latent
(unobserved) variables for
each data point. The simplest
example is the mixture of
Gaussian values.

Bottleneck layer
A neural network layer that
contains fewer neurons than
previous and subsequent
layers.

Generative models
Models able to generate points
from the desired distribution.
Deep generative models are
often implemented by a neural
network that transforms
samples from a standard
distribution (normal and
uniform) into samples from
a complex distribution (gene
expression levels or sequences
that encode a splice site).

Hyperparameters
Parameters specifying the
model or the training
procedure that are not
optimized by the learning
algorithm (for example, by the
stochastic gradient descent
algorithm). Examples of
hyperparameters are the
number of layers, regularization
strength, batch size and the
optimization step size.

www.nature.com/nrg

R e v i e w s

for genomics. One of these qualitative advantages is
end-to-end learning. Data preprocessing steps can
be time-consuming and error prone, especially in the
genomics field because of the variety of experimental
data sources. Being able to integrate multiple pre
processing steps into a single model and to ‘let the data
speak’ when defining features are important advantages
that often increase predictive power. We expect end-to-
end learning approaches to become more widely used
across genomics, including protein structure predic-
tion152. Another qualitative advantage that is particularly
important for genomics is the ability of deep learning to
deal with multimodal data effectively. Genomics offers
extremely heterogeneous data including sequence,
counts, mass spectrometry intensity and images. An
important application of multimodal modelling will be
the development of machine learning models for spatial
transcriptomics153 that integrate scRNA-seq and imag-
ing data, allowing gene expression to be jointly ana-
lysed with the morphology of the cell and its position
in the tissue. Deep learning is the ideal approach for
incorporating spatial patterns into analyses, as has been
shown extensively for microscopy data21,154. Last but not
least, an important advantage is the abstraction of the
mathematical details that is offered by deep learning
frameworks. Researchers in genomics often do not have
the theoretical knowledge, nor do they have the time,
to formulate statistical models and devise appropriate
parameter fitting algorithms. Deep learning frameworks
abstract much of the mathematical and technical details,
such as the need for manually deriving gradients and

optimization procedures, which lowers the entry barrier
to the development of new models.

In the future, we expect deep learning to find new
applications across multiple omics data types. We also
expect to see an increasing uptake of new techniques
from the deep learning research community. A particu-
lar challenge in human genomics is data privacy. One
appealing direction is the development of federated
learning whereby machine learning model instances
are deployed on distinct sites and trained on local data
while sharing common parameters155. By avoiding data
transfer, federated learning can reduce total training
time and can facilitate the respect of genetic and medical
data privacy. Another relevant technique for data privacy
is generative models, which could be used to simulate
human genomics data that can be analysed by others
without privacy violation156. Another important area is
the prediction of causal effects, which is highly relevant
to medical and therapeutic applications. Substantial
progress may occur on this front as, on the one hand,
the field of machine learning is becoming increasingly
interested in causal modelling and, on the other hand,
the field of genomics is increasingly generating pertur-
bation data using massively parallel reporter assays or
systematic CRISPR screens at the bulk and single-cell
level. Although the impact of these novel developments
remains to be seen, the magnitude and complexity of
genomic data will ensure that deep learning will become
an everyday tool for its analysis.

Published online xx xx xxxx

1.	 Hieter, P. & Boguski, M. Functional genomics:
it’s all how you read it. Science 278, 601–602 (1997).

2.	 Brown, P. O. & Botstein, D. Exploring the new world
of the genome with DNA microarrays. Nat. Genet. 21,
33–37 (1999).

3.	 Ozaki, K. et al. Functional SNPs in the lymphotoxin-α
gene that are associated with susceptibility to
myocardial infarction. Nat. Genet. 32, 650–654
(2002).

4.	 Golub, T. R. et al. Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring. Science 286, 531–537 (1999).

5.	 Oliver, S. Guilt-by-association goes global. Nature
403, 601–603 (2000).

6.	 The ENCODE Project Consortium. An integrated
encyclopedia of DNA elements in the human genome.
Nature 489, 57–74 (2012).

7.	 Murphy, K. P. Machine Learning: A Probabilistic
Perspective (MIT Press, 2012).

8.	 Bishop, C. M. Pattern Recognition and Machine
Learning (Springer, New York, 2016).

9.	 Libbrecht, M. W. & Noble, W. S. Machine learning
applications in genetics and genomics. Nat. Rev.
Genet. 16, 321–332 (2015).

10.	 Durbin, R., Eddy, S. R., Krogh, A. & Mitchison, G.
Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids (Cambridge Univ. Press,
1998).

11.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep
Learning (MIT Press, 2016).
This textbook covers theoretical and practical
aspects of deep learning with introductory sections
on linear algebra and machine learning.

12.	 Shi, S., Wang, Q., Xu, P. & Chu, X. in 2016 7th
International Conference on Cloud Computing and
Big Data (CCBD) 99–104 (IEEE, 2016).

13.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. in
Advances in Neural Information Processing Systems
25 (NIPS 2012) (eds Pereira, F., Burges, C. J. C.,
Bottou, L. & Weinberger, K. Q.) 1097–1105
(Curran Associates, Inc., 2012).

14.	 Girshick, R., Donahue, J., Darrell, T. & Malik, J. in
2014 IEEE Conference on Computer Vision and
Pattern Recognition 580–587 (IEEE, 2014).

15.	 Long, J., Shelhamer, E. & Darrell, T. in 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) 3431–3440 (IEEE, 2015).

16.	 Hannun, A. et al. Deep speech: scaling up end-to-end
speech recognition. Preprint at arXiv https://arxiv.org/
abs/1412.5567 (2014).

17.	 Wu, Y. et al. Google’s neural machine translation
system: bridging the gap between human and machine
translation. Preprint at arXiv https://arxiv.org/abs/
1609.08144 (2016).

18.	 Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J.
Predicting the sequence specificities of DNA- and
RNA-binding proteins by deep learning. Nat.
Biotechnol. 33, 831–838 (2015).
This paper describes a pioneering convolutional
neural network application in genomics.

19.	 Zhou, J. & Troyanskaya, O. G. Predicting effects
of noncoding variants with deep learning-based
sequence model. Nat. Methods 12, 931–934
(2015).
This paper applies deep CNNs to predict chromatin
features and transcription factor binding from
DNA sequence and demonstrates its utility in
non-coding variant effect prediction.

20.	 Zou, J. et al. A primer on deep learning in genomics.
Nat. Genet. 51, 12–18 (2019).

21.	 Angermueller, C., Pärnamaa, T., Parts, L. & Stegle, O.
Deep learning for computational biology. Mol. Syst.
Biol. 12, 878 (2016).

22.	 Min, S., Lee, B. & Yoon, S. Deep learning in
bioinformatics. Brief. Bioinform. 18, 851–869
(2017).

23.	 Jones, W., Alasoo, K., Fishman, D. & Parts, L.
Computational biology: deep learning. Emerg. Top.
Life Sci. 1, 257–274 (2017).

24.	 Wainberg, M., Merico, D., Delong, A. & Frey, B. J.
Deep learning in biomedicine. Nat. Biotechnol. 36,
829–838 (2018).

25.	 Ching, T. et al. Opportunities and obstacles for deep
learning in biology and medicine. J. R. Soc. Interface
15, 20170387 (2018).

26.	 Morgan, J. N. & Sonquist, J. A. Problems in the
analysis of survey data, and a proposal. J. Am. Stat.
Assoc. 58, 415–434 (1963).

27.	 Boser, B. E., Guyon, I. M. & Vapnik, V. N. A. in
Proceedings of the Fifth Annual Workshop on
Computational Learning Theory 144–152 (ACM,
1992).

28.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32
(2001).

29.	 Friedman, J. H. Greedy function approximation: a
gradient boosting machine. Ann. Stat. 29, 1189–1232
(2001).

30.	 Xiong, H. Y. et al. RNA splicing. The human splicing
code reveals new insights into the genetic determinants
of disease. Science 347, 1254806 (2015).

31.	 Jha, A., Gazzara, M. R. & Barash, Y. Integrative deep
models for alternative splicing. Bioinformatics 33,
i274–i282 (2017).

32.	 Quang, D., Chen, Y. & Xie, X. DANN: a deep learning
approach for annotating the pathogenicity of genetic
variants. Bioinformatics 31, 761–763 (2015).

33.	 Liu, F., Li, H., Ren, C., Bo, X. & Shu, W. PEDLA:
predicting enhancers with a deep learning-based
algorithmic framework. Sci. Rep. 6, 28517 (2016).

34.	 Li, Y., Shi, W. & Wasserman, W. W. Genome-wide
prediction of cis-regulatory regions using supervised
deep learning methods. BMC Bioinformatics 19, 202
(2018).

35.	 Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B.
Genome-wide mapping of in vivo protein-DNA
interactions. Science 316, 1497–1502 (2007).

36.	 Barski, A. et al. High-resolution profiling of histone
methylations in the human genome. Cell 129,
823–837 (2007).

37.	 Robertson, G. et al. Genome-wide profiles of STAT1
DNA association using chromatin immunoprecipitation
and massively parallel sequencing. Nat. Methods 4,
651–657 (2007).

38.	 Park, P. J. ChIP-seq: advantages and challenges of a
maturing technology. Nat. Rev. Genet. 10, 669–680
(2009).

39.	 Weirauch, M. T. et al. Evaluation of methods for
modeling transcription factor sequence specificity.
Nat. Biotechnol. 31, 126 (2013).

40.	 Lee, D., Karchin, R. & Beer, M. A. Discriminative
prediction of mammalian enhancers from DNA
sequence. Genome Res. 21, 2167–2180 (2011).

Nature Reviews | Genetics

R e v i e w s

https://arxiv.org/abs/1412.5567
https://arxiv.org/abs/1412.5567
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144

41.	 Ghandi, M., Lee, D., Mohammad-Noori, M. &
Beer, M. A. Enhanced regulatory sequence prediction
using gapped k-mer features. PLOS Comput. Biol. 10,
e1003711 (2014).

42.	 Stormo, G. D., Schneider, T. D., Gold, L. &
Ehrenfeucht, A. Use of the ‘Perceptron’ algorithm
to distinguish translational initiation sites in E. coli.
Nucleic Acids Res. 10, 2997–3011 (1982).

43.	 Stormo, G. D. DNA binding sites: representation
and discovery. Bioinformatics 16, 16–23 (2000).

44.	 D’haeseleer, P. What are DNA sequence motifs?
Nat. Biotechnol. 24, 423–425 (2006).

45.	 Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning
the regulatory code of the accessible genome with
deep convolutional neural networks. Genome Res. 26,
990–999 (2016).
This paper describes the application of a deep
CNN to predict chromatin accessibility in 164 cell
types from DNA sequence.

46.	 Wang, M., Tai, C., E, W. & Wei, L. DeFine: deep
convolutional neural networks accurately quantify
intensities of transcription factor-DNA binding and
facilitate evaluation of functional non-coding variants.
Nucleic Acids Res. 46, e69 (2018).

47.	 Kelley, D. R. et al. Sequential regulatory activity
prediction across chromosomes with convolutional
neural networks. Genome Res. 28, 739–750
(2018).
In this paper, a deep CNN was trained to
predict more than 4,000 genomic measurements
including gene expression as measured by cap
analysis of gene expression (CAGE) for every
150 bp in the genome using a receptive field
of 32 kb.

48.	 Schreiber, J., Libbrecht, M., Bilmes, J. & Noble, W.
Nucleotide sequence and DNaseI sensitivity are
predictive of 3D chromatin architecture. Preprint
at bioRxiv https://doi.org/10.1101/103614
(2018).

49.	 Zeng, H. & Gifford, D. K. Predicting the impact of
non-coding variants on DNA methylation. Nucleic
Acids Res. 45, e99 (2017).

50.	 Angermueller, C., Lee, H. J., Reik, W. & Stegle, O.
DeepCpG: accurate prediction of single-cell DNA
methylation states using deep learning. Genome Biol.
18, 67 (2017).

51.	 Zhou, J. et al. Deep learning sequence-based ab initio
prediction of variant effects on expression and disease
risk. Nat. Genet. 50, 1171–1179 (2018).
In this paper, two models, a deep CNN and a linear
model, are stacked to predict tissue-specific gene
expression from DNA sequence, which demonstrates
the utility of this approach in non-coding variant
effect prediction.

52.	 Cuperus, J. T. et al. Deep learning of the regulatory
grammar of yeast 5’ untranslated regions from
500,000 random sequences. Genome Res. 27,
2015–2024 (2017).

53.	 Pan, X. & Shen, H.-B. RNA-protein binding motifs
mining with a new hybrid deep learning based
cross-domain knowledge integration approach.
BMC Bioinformatics 18, 136 (2017).

54.	 Avsec, Ž., Barekatain, M., Cheng, J. & Gagneur, J.
Modeling positional effects of regulatory sequences
with spline transformations increases prediction
accuracy of deep neural networks. Bioinformatics 34,
1261–1269 (2018).

55.	 Budach, S. & Marsico, A. pysster: classification of
biological sequences by learning sequence and
structure motifs with convolutional neural networks.
Bioinformatics 34, 3035–3037 (2018).

56.	 Cheng, S. et al. MiRTDL: a deep learning approach
for miRNA target prediction. IEEE/ACM Trans. Comput.
Biol. Bioinform. 13, 1161–1169 (2016).

57.	 Kim, H. K. et al. Deep learning improves prediction of
CRISPR-Cpf1 guide RNA activity. Nat. Biotechnol. 36,
239–241 (2018).

58.	 Koh, P. W., Pierson, E. & Kundaje, A. Denoising
genome-wide histone ChIP-seq with convolutional
neuralnetworks. Bioinformatics 33, i225–i233
(2017).

59.	 Zhang, Y. et al. Enhancing Hi-C data resolution with
deep convolutional neural network HiCPlus. Nat.
Commun. 9, 750 (2018).

60.	 Nielsen, A. A. K. & Voigt, C. A. Deep learning to
predict the lab-of-origin of engineered DNA. Nat.
Commun. 9, 3135 (2018).

61.	 Luo, R., Sedlazeck, F. J., Lam, T.-W. & Schatz, M.
Clairvoyante: a multi-task convolutional deep neural
network for variant calling in single molecule
sequencing. Preprint at bioRxiv https://doi.org/
10.1101/310458 (2018).

62.	 Poplin, R. et al. A universal SNP and small-indel
variant caller using deep neural networks. Nat.
Biotechnol. 36, 983–987 (2018).
In this paper, a deep CNN is trained to call
genetic variants from different DNA-sequencing
technologies.

63.	 Jaganathan, K. et al. Predicting splicing from primary
sequence with deep learning. Cell 176, 535–548
(2019).

64.	 Elman, J. L. Finding structure in time. Cogn. Sci. 14,
179–211 (1990).

65.	 Hochreiter, S. & Schmidhuber, J. Long short-term
memory. Neural Comput. 9, 1735–1780 (1997).

66.	 Bai, S., Zico Kolter, J. & Koltun, V. An empirical
evaluation of generic convolutional and recurrent
networks for sequence modeling. Preprint at arXiv
https://arxiv.org/abs/1803.01271 (2018).

67.	 Pan, X., Rijnbeek, P., Yan, J. & Shen, H.-B. Prediction
of RNA-protein sequence and structure binding
preferences using deep convolutional and recurrent
neural networks. BMC Genomics 19, 511 (2018).

68.	 Quang, D. & Xie, X. DanQ: a hybrid convolutional
and recurrent deep neural network for quantifying the
function of DNA sequences. Nucleic Acids Res. 44,
e107 (2016).

69.	 Quang, D. & Xie, X. FactorNet: a deep learning
framework for predicting cell type specific transcription
factor binding from nucleotide-resolution sequential
data. Preprint at bioRxiv https://doi.org/10.1101/
151274 (2017).

70.	 Lee, B., Baek, J., Park, S. & Yoon, S. in Proceedings of
the 7th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics
434–442 (ACM, 2016).

71.	 Park, S., Min, S., Choi, H. & Yoon, S. deepMiRGene:
deep neural network based precursor microRNA
prediction. Preprint at arXiv https://arxiv.org/
abs/1605.00017 (2016).

72.	 Boža, V., Brejová, B. & Vinař;, T. DeepNano:
deep recurrent neural networks for base calling in
MinION nanopore reads. PLOS ONE 12, e0178751
(2017).

73.	 Mikheyev, A. S. & Tin, M. M. Y. A first look at the
Oxford Nanopore MinION sequencer. Mol. Ecol.
Resour. 14, 1097–1102 (2014).

74.	 Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network
medicine: a network-based approach to human
disease. Nat. Rev. Genet. 12, 56–68 (2011).

75.	 Mitra, K., Carvunis, A.-R., Ramesh, S. K. & Ideker, T.
Integrative approaches for finding modular structure
in biological networks. Nat. Rev. Genet. 14, 719–732
(2013).

76.	 Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.
& Monfardini, G. The graph neural network model.
IEEE Trans. Neural Netw. 20, 61–80 (2009).

77.	 Defferrard, M., Bresson, X. & Vandergheynst, P. in
Advances in Neural Information Processing Systems
29 (NIPS 2016) (eds Lee, D. D., Sugiyama, M.,
Luxburg, U. V., Guyon, I. & Garnett, R.) 3844–3852
(Curran Associates Inc., 2016).

78.	 Kipf, T. N. & Welling, M. Semi-supervised classification
with graph convolutional networks. Preprint at arXiv
https://arxiv.org/abs/1609.02907 (2016).

79.	 Battaglia, P. W. et al. Relational inductive biases,
deep learning, and graph networks. Preprint at arXiv
https://arxiv.org/abs/1806.01261 (2018).

80.	 Hamilton, W. L., Ying, R. & Leskovec, J. Inductive
representation learning on large graphs. Preprint
at arXiv https://arxiv.org/abs/1706.02216 (2017).

81.	 Chen, J., Ma, T. & Xiao, C. FastGCN: fast learning
with graph convolutional networks via importance
sampling. Preprint at arXiv https://arxiv.org/abs/
1801.10247 (2018).

82.	 Zitnik, M. & Leskovec, J. Predicting multicellular
function through multi-layer tissue networks.
Bioinformatics 33, i190–i198 (2017).

83.	 Zitnik, M., Agrawal, M. & Leskovec, J. Modeling
polypharmacy side effects with graph convolutional
networks. Bioinformatics 34, i457–i466 (2018).

84.	 Duvenaud, D. K. et al. in Advances in Neural
Information Processing Systems 28 (NIPS 2015) (eds
Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.
& Garnett, R.) 2224–2232 (Curran Associates Inc.,
2015).

85.	 Kearnes, S., McCloskey, K., Berndl, M., Pande, V.
& Riley, P. Molecular graph convolutions: moving
beyond fingerprints. J. Comput. Aided Mol. Des. 30,
595–608 (2016).

86.	 Dutil, F., Cohen, J. P., Weiss, M., Derevyanko, G.
& Bengio, Y. Towards gene expression convolutions
using gene interaction graphs. Preprint at arXiv
https://arxiv.org/abs/1806.06975 (2018).

87.	 Rhee, S., Seo, S. & Kim, S. in Proceedings of the
Twenty-Seventh International Joint Conference on
Artificial Intelligence 3527–3534 (IJCAI, 2018).

88.	 Chen, Z., Badrinarayanan, V., Lee, C.-Y. & Rabinovich, A.
GradNorm: gradient normalization for adaptive loss
balancing in deep multitask networks. Preprint at arXiv
https://arxiv.org/abs/1711.02257 (2017).

89.	 Sung, K. & Poggio, T. Example-based learning for
view-based human face detection. IEEE Trans. Pattern
Anal. Mach. Intell. 20, 39–51 (1998).

90.	 Felzenszwalb, P. F., Girshick, R. B., McAllester, D. &
Ramanan, D. Object detection with discriminatively
trained part-based models. IEEE Trans. Pattern Anal.
Mach. Intell. 32, 1627–1645 (2010).

91.	 Guo, M., Haque, A., Huang, D.-A., Yeung, S. & Fei-Fei, L.
in Computer Vision – ECCV 2018 (eds Ferrari, V.,
Hebert, M., Sminchisescu, C. & Weiss, Y.) Vol. 11220
282–299 (Springer International Publishing, 2018).

92.	 Sundaram, L. et al. Predicting the clinical impact of
human mutation with deep neural networks. Nat. Genet.
50, 1161–1170 (2018).

93.	 Zitnik, M. et al. Machine learning for integrating data
in biology and medicine: principles, practice, and
opportunities. Inf. Fusion 50, 71–91 (2018).

94.	 Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. in
Advances in Neural Information Processing Systems
27 (NIPS 2014) (eds Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N. D. & Weinberger, K. Q.)
3320–3328 (Curran Associates Inc., 2014).

95.	 Kornblith, S., Shlens, J. & Le, Q. V. Do better ImageNet
models transfer better? Preprint at arXiv https://arxiv.
org/abs/1805.08974 (2018).

96.	 Russakovsky, O. et al. ImageNet large scale visual
recognition challenge. Preprint at arXiv https://arxiv.
org/abs/1409.0575 (2014).

97.	 Esteva, A. et al. Dermatologist-level classification of
skin cancer with deep neural networks. Nature 542,
115–118 (2017).

98.	 Pawlowski, N., Caicedo, J. C., Singh, S., Carpenter, A. E.
& Storkey, A. Automating morphological profiling
with generic deep convolutional networks. Preprint at
bioRxiv https://doi.org/10.1101/085118 (2016).

99.	 Zeng, T., Li, R., Mukkamala, R., Ye, J. & Ji, S. Deep
convolutional neural networks for annotating gene
expression patterns in the mouse brain. BMC
Bioinformatics 16, 147 (2015).

100.	Zhang, W. et al. in IEEE Transactions on Big Data
(IEEE, 2018).

101.	Adam, P. et al. Automatic differentiation in PyTorch.
Presented at 31st Conference on Neural Information
Processing Systems (NIPS 2017).

102.	Abadi, M. et al. Tensorflow: large-scale machine
learning on heterogeneous distributed systems.
Preprint at arXiv https://arxiv.org/abs/1603.04467
(2016).

103.	Avsec, Z. et al. Kipoi: accelerating the community
exchange and reuse of predictive models for genomics.
Preprint at bioRxiv https://doi.org/10.1101/375345
(2018).
This paper describes a platform to exchange
trained predictive models in genomics including
deep neural networks.

104.	Breiman, L. Statistical modeling: the two cultures
(with comments and a rejoinder by the author).
Stat. Sci. 16, 199–231 (2001).

105.	Greenside, P., Shimko, T., Fordyce, P. & Kundaje, A.
Discovering epistatic feature interactions from neural
network models of regulatory DNA sequences.
Bioinformatics 34, i629–i637 (2018).

106.	Zeiler, M. D. & Fergus, R. in Computer Vision – ECCV
2014 (eds Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T.)
Vol. 8689 818–833 (Springer International
Publishing, 2014).

107.	Simonyan, K., Vedaldi, A. & Zisserman, A. Deep
inside convolutional networks: visualising image
classification models and saliency maps. Preprint
at arXiv https://arxiv.org/abs/1312.6034 (2013).

108.	Shrikumar, A., Greenside, P., Shcherbina, A. &
Kundaje, A. Not just a black box: learning important
features through propagating activation differences.
Preprint at arXiv https://arxiv.org/abs/1605.01713
(2016).
This paper introduces DeepLIFT, a neural network
interpretation method that highlights inputs most
influential for the prediction.

109.	Sundararajan, M., Taly, A. & Yan, Q. Axiomatic
attribution for deep networks. Preprint at arXiv
https://arxiv.org/abs/1703.01365 (2017).

110.	 Lanchantin, J., Singh, R., Wang, B. & Qi, Y. Deep motif
dashboard: visualizing and understanding genomic
sequences using deep neural networks. Pac. Symp.
Biocomput. 22, 254–265 (2017).

www.nature.com/nrg

R e v i e w s

https://doi.org/10.1101/103614
https://doi.org/10.1101/310458
https://doi.org/10.1101/310458
https://arxiv.org/abs/1803.01271
https://doi.org/10.1101/151274
https://doi.org/10.1101/151274
https://arxiv.org/abs/1605.00017
https://arxiv.org/abs/1605.00017
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1801.10247
https://arxiv.org/abs/1801.10247
https://arxiv.org/abs/1806.06975
https://arxiv.org/abs/1711.02257
https://arxiv.org/abs/1805.08974
https://arxiv.org/abs/1805.08974
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1409.0575
https://doi.org/10.1101/085118
https://arxiv.org/abs/1603.04467
https://doi.org/10.1101/375345
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1605.01713
https://arxiv.org/abs/1703.01365

111.	 Shrikumar, A. et al. TF-MoDISco v0.4.4.2-alpha:
technical note. Preprint at arXiv https://arxiv.org/
abs/1811.00416v2 (2018).

112.	Ma, J. et al. Using deep learning to model the
hierarchical structure and function of a cell.
Nat. Methods 15, 290–298 (2018).

113.	Hinton, G. E. & Salakhutdinov, R. R. Reducing the
dimensionality of data with neural networks. Science
313, 504–507 (2006).

114.	Kramer, M. A. Nonlinear principal component analysis
using autoassociative neural networks. AIChE J. 37,
233–243 (1991).

115.	Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A.
in Proceedings of the 25th International Conference on
Machine Learning 1096–1103 (ACM, 2008).

116.	Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y. &
Manzagol, P.-A. Stacked denoising autoencoders:
learning useful representations in a deep network
with a local denoising criterion. J. Mach. Learn. Res.
11, 3371–3408 (2010).

117.	Jolliffe, I. in International Encyclopedia of Statistical
Science (ed. Lovric, M.) 1094–1096 (Springer Berlin
Heidelberg, 2011).

118.	Plaut, E. From principal subspaces to principal
components with linear autoencoders. Preprint at
arXiv https://arxiv.org/abs/1804.10253 (2018).

119.	Kunin, D., Bloom, J. M., Goeva, A. & Seed, C. Loss
landscapes of regularized linear autoencoders. Preprint
at arXiv https://arxiv.org/abs/1901.08168 (2019).

120.	Scholz, M., Kaplan, F., Guy, C. L., Kopka, J.
& Selbig, J. Non-linear PCA: a missing data approach.
Bioinformatics 21, 3887–3895 (2005).

121.	Tan, J., Hammond, J. H., Hogan, D. A. & Greene, C. S.
ADAGE-based integration of publicly available
Pseudomonas aeruginosa gene expression data with
denoising autoencoders illuminates microbe-host
interactions. mSystems 1, e00025–15 (2016).

122.	Tan, J. et al. ADAGE signature analysis: differential
expression analysis with data-defined gene sets.
BMC Bioinformatics 18, 512 (2017).

123.	Tan, J. et al. Unsupervised extraction of stable
expression signatures from public compendia with
an ensemble of neural networks. Cell Syst. 5, 63–71
(2017).

124.	Brechtmann, F. et al. OUTRIDER: a statistical method
for detecting aberrantly expressed genes in RNA
sequencing data. Am. J. Hum. Genet. 103, 907–917
(2018).

125.	Ding, J., Condon, A. & Shah, S. P. Interpretable
dimensionality reduction of single cell transcriptome
data with deep generative models. Nat. Commun. 9,
2002 (2018).

126.	Cho, H., Berger, B. & Peng, J. Generalizable and
scalable visualization of single-cell data using neural
networks. Cell Syst. 7, 185–191 (2018).

127.	Deng, Y., Bao, F., Dai, Q., Wu, L. & Altschuler, S.
Massive single-cell RNA-seq analysis and imputation
via deep learning. Preprint at bioRxiv https://doi.org/
10.1101/315556 (2018).

128.	Talwar, D., Mongia, A., Sengupta, D. & Majumdar, A.
AutoImpute: autoencoder based imputation of
single-cell RNA-seq data. Sci. Rep. 8, 16329 (2018).

129.	Amodio, M. et al. Exploring single-cell data with deep
multitasking neural networks. Preprint at bioRxiv
https://doi.org/10.1101/237065 (2019).

130.	Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. &
Theis, F. J. Single-cell RNA-seq denoising using a deep
count autoencoder. Nat. Commun. 10, 390 (2019).

131.	Lin, C., Jain, S., Kim, H. & Bar-Joseph, Z. Using neural
networks for reducing the dimensions of single-cell
RNA-Seq data. Nucleic Acids Res. 45, e156 (2017).

132.	Kingma, D. P. & Welling, M. Auto-encoding variational
bayes. Preprint at arXiv https://arxiv.org/abs/1312.
6114 (2013).

133.	Goodfellow, I. et al. in Advances in Neural
Information Processing Systems 27 (NIPS 2014)

(eds Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N. D. & Weinberger, K. Q.) 2672–2680
(Curran Associates Inc., 2014).

134.	Lopez, R., Regier, J., Cole, M. B., Jordan, M. I.
& Yosef, N. Deep generative modeling for single-cell
transcriptomics. Nat. Methods 15, 1053–1058
(2018).

135.	Way, G. P. & Greene, C. S. in Biocomputing 2018:
Proceedings of the Pacific Symposium (eds Altman, R. B.
et al.) 80–91 (World Scientific, 2018).

136.	Grønbech, C. H. et al. scVAE: variational auto-encoders
for single-cell gene expression data. Preprint at
bioRxiv https://doi.org/10.1101/318295 (2018).

137.	Wang, D. & Gu, J. VASC: dimension reduction and
visualization of single-cell RNA-seq data by deep
variational autoencoder. Genomics Proteomics
Bioinformatics 16, 320–331 (2018).

138.	Lotfollahi, M., Alexander Wolf, F. & Theis, F. J.
Generative modeling and latent space arithmetics
predict single-cell perturbation response across cell
types, studies and species. Preprint at bioRxiv
https://doi.org/10.1101/478503 (2018).

139.	Hu, Q. & Greene, C. S. Parameter tuning is a key part
of dimensionality reduction via deep variational
autoencoders for single cell RNA transcriptomics.
Preprint at bioRxiv https://doi.org/10.1101/385534
(2018).

140.	Gupta, A. & Zou, J. Feedback GAN (FBGAN) for DNA:
a novel feedback-loop architecture for optimizing
protein functions. Preprint at arXiv https://arxiv.org/
abs/1804.01694 (2018).

141.	Killoran, N., Lee, L. J., Delong, A., Duvenaud, D. &
Frey, B. J. Generating and designing DNA with deep
generative models. Preprint at arXiv https://arxiv.org/
abs/1712.06148 (2017).

142.	Ghahramani, A., Watt, F. M. & Luscombe, N. M.
Generative adversarial networks simulate gene
expression and predict perturbations in single cells.
Preprint at bioRxiv https://doi.org/10.1101/262501
(2018).

143.	Amodio, M. & Krishnaswamy, S. MAGAN: aligning
biological manifolds. Preprint at arXiv https://arxiv.
org/abs/1803.00385 (2018).

144.	Maurano, M. T. et al. Systematic localization of
common disease-associated variation in regulatory
DNA. Science 337, 1190–1195 (2012).

145.	Cheng, J. et al. MMSplice: modular modeling improves
the predictions of genetic variant effects on splicing.
Genome Biol. 20, 48 (2019).

146.	van der Maaten, L. in Proceedings of the Twelfth
International Conference on Artificial Intelligence
and Statistics (eds van Dyk, D. & Welling, M.) Vol. 5
384–391 (PMLR, 2009).

147.	Angerer, P. et al. Single cells make big data: new
challenges and opportunities in transcriptomics.
Curr. Opin. Syst. Biol. 4, 85–91 (2017).

148.	Shaham, U. et al. Removal of batch effects using
distribution-matching residual networks. Bioinformatics
33, 2539–2546 (2017).

149.	Regev, A. et al. The human cell atlas. eLife 6, e27041
(2017).

150.	Fleming, N. How artificial intelligence is changing drug
discovery. Nature 557, S55–S57 (2018).

151.	Kalinin, A. A. et al. Deep learning in pharmacogenomics:
from gene regulation to patient stratification.
Pharmacogenomics 19, 629–650 (2018).

152.	AlQuraishi, M. End-to-end differentiable learning of
protein structure. Preprint at bioRxiv https://doi.org/
10.1101/265231 (2018).

153.	Nawy, T. Spatial transcriptomics. Nat. Methods 15,
30 (2018).

154.	Eulenberg, P. et al. Reconstructing cell cycle and
disease progression using deep learning. Nat. Commun.
8, 463 (2017).

155.	KoneČný, J., McMahan, H. B., Ramage, D.
& Richtárik, P. Federated optimization: distributed

machine learning for on-device intelligence. Preprint at
arXiv https://arxiv.org/abs/1610.02527 (2016).

156.	Beaulieu-Jones, B. K. et al. Privacy-preserving
generative deep neural networks support clinical data
sharing. Preprint at bioRxiv https://doi.org/10.1101/
159756 (2018).

157.	Lever, J., Krzywinski, M. & Altman, N. Classification
evaluation. Nat. Methods 13, 603 (2016).

158.	Tieleman, T. & Hinton, G. Lecture 6.5 - RMSProp,
COURSERA: neural networks for machine learning
(2012).

159.	Kingma, D. P. & Ba, J. Adam: a method for stochastic
optimization. Preprint at arXiv https://arxiv.org/abs/
1412.6980 (2014).

160.	Schmidhuber, J. Deep learning in neural networks:
an overview. Neural Netw. 61, 85–117 (2015).

161.	LeCun, Y., Bengio, Y. & Hinton, G. Deep learning.
Nature 521, 436–444 (2015).

162.	Bottou, L. in Proceedings of Neuro-Nımes ‘91 12
(EC2, 1991).

163.	Bengio, Y. Practical recommendations for gradient-
based training of deep architectures. Preprint at arXiv
https://arxiv.org/abs/1206.5533 (2012).

164.	Bergstra, J. & Bengio, Y. Random search for hyper-
parameter optimization. J. Mach. Learn. Res. 13,
281–305 (2012).

165.	Bergstra, J., Yamins, D. & Cox, D. in Proceedings of
the 30th International Conference on Machine
Learning Vol. 28 115–123 (JMLR W&CP, 2013).

166.	Shahriari, B., Swersky, K., Wang, Z., Adams, R. P.
& de Freitas, N. Taking the human out of the loop:
a review of bayesian optimization. Proc. IEEE 104,
148–175 (2016).

167.	Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A.
& Talwalkar, A. Hyperband: a novel bandit-based
approach to hyperparameter optimization. J. Mach.
Learn. Res. 18, 6765–6816 (2017).

168.	Elsken, T., Metzen, J. H. & Hutter, F. Neural architecture
search: a survey. Preprint at arXiv https://arxiv.org/
abs/1808.05377 (2018).

Acknowledgements
Ž.A. was supported by the German Bundesministerium für
Bildung und Forschung (BMBF) through the project MechML
(01IS18053F). The authors acknowledge M. Heinig and
A. Raue for valuable feedback.

Author contributions
The authors contributed equally to all aspects of the article.

Competing interests
The authors declare no competing interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Reviewer information
Nature Reviews Genetics thanks C. Greene and the other
anonymous reviewer(s) for their contribution to the peer
review of this work.

Related links
DragoNN: https://kundajelab.github.io/dragonn/tutorials.html
Kaggle machine learning competitions: https://www.
kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-
competitions
Keras: https://keras.io/
Keras model zoos: https://keras.io/applications/
PyTorch: http://pytorch.org
PyTorch model zoos: https://pytorch.org/docs/stable/
torchvision/models.html
Tensorflow model zoos: https://github.com/tensorflow/
models; https://www.tensorflow.org/hub/

Nature Reviews | Genetics

R e v i e w s

https://arxiv.org/abs/1811.00416v2
https://arxiv.org/abs/1811.00416v2
https://arxiv.org/abs/1804.10253
https://arxiv.org/abs/1901.08168
https://doi.org/10.1101/315556
https://doi.org/10.1101/315556
https://doi.org/10.1101/237065
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1101/318295
https://doi.org/10.1101/478503
https://doi.org/10.1101/385534
https://arxiv.org/abs/1804.01694
https://arxiv.org/abs/1804.01694
https://arxiv.org/abs/1712.06148
https://arxiv.org/abs/1712.06148
https://doi.org/10.1101/262501
https://arxiv.org/abs/1803.00385
https://arxiv.org/abs/1803.00385
https://doi.org/10.1101/265231
https://doi.org/10.1101/265231
https://arxiv.org/abs/1610.02527
https://doi.org/10.1101/159756
https://doi.org/10.1101/159756
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1206.5533
https://arxiv.org/abs/1808.05377
https://arxiv.org/abs/1808.05377
https://kundajelab.github.io/dragonn/tutorials.html
https://www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-competitions
https://www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-competitions
https://www.kaggle.com/sudalairajkumar/winning-solutions-of-kaggle-competitions
https://keras.io/
https://keras.io/applications/
http://pytorch.org
https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://www.tensorflow.org/hub/

	Deep learning: new computational modelling techniques for genomics

	Supervised learning

	Box 1 | Training neural networks for supervised learning

	Complex dependencies can be modelled with deep neural networks.
	Example code for training neural networks

	Convolutions discover local patterns in sequential data.
	Recurrent neural networks model long-range dependencies in sequences.
	Graph-convolutional neural networks model dependencies in graph-structured data.
	Sharing information across tasks and integrating data modalities.
	Training models on small data sets with transfer learning.

	Explaining predictions

	Feature importance scores interrogate input–output relationships.
	Sequence motif discovery.
	Neural networks with interpretable parameters and activations.

	Unsupervised learning

	Impact in genomics

	Predicting the effect of non-coding variants.
	Deep learning as a fully data-driven refinement of bioinformatics tools.
	Richer representations to reveal the structure of high-dimensional data.

	Conclusions and future perspectives

	Acknowledgements

	Fig. 1 Neural networks with hidden layers used to model nonlinear dependencies.
	Fig. 2 Modelling transcription factor binding sites and spacing with convolutional neural networks.
	Fig. 3 Neural network layers and their parameter-sharing schemes.
	Fig. 4 Multitask models, multimodal models and transfer learning.
	Fig. 5 Model interpretation via feature importance scores.
	Fig. 6 Unsupervised learning.

