
Genomics, in the broad sense, also referred to as func-
tional genomics, aims to characterize the function 
of every genomic element of an organism by using 
genome-scale assays such as genome sequencing, tran-
scriptome profiling and proteomics1. Genomics arose 
as a data-driven science — it operates by discovering 
novel properties from explorations of genome-scale data 
rather than by testing preconceived models and hypo
theses2. Applications of genomics include finding asso-
ciations between genotype and phenotype3, discovering 
biomarkers for patient stratification4, predicting the 
function of genes5 and charting biochemically active 
genomic regions such as transcriptional enhancers6.

Genomics data are too large and too complex to be 
mined solely by visual investigation of pairwise corre-
lations. Instead, analytical tools are required to support 
the discovery of unanticipated relationships, to derive 
novel hypotheses and models and to make predictions. 
Unlike some algorithms, in which assumptions and 
domain expertise are hard coded, machine learning 
algorithms are designed to automatically detect pat-
terns in data7,8. Hence, machine learning algorithms 
are suited to data-driven sciences and, in particular, 
to genomics9,10. However, the performance of machine 
learning algorithms can strongly depend on how the 
data are represented, that is, on how each variable (also 
called a feature) is computed. For instance, to classify a 
tumour as malign or benign from a fluorescent micro
scopy image, a preprocessing algorithm could detect 
cells, identify the cell type and generate a list of cell 
counts for each cell type. A machine learning model 
would then take these estimated cell counts, which are 
examples of handcrafted features, as input features to 
classify the tumour. A central issue is that classification 
performance depends heavily on the quality and the 
relevance of these features. For example, relevant visual 
features such as cell morphology, distances between cells 

or localization within an organ are not captured in cell 
counts, and this incomplete representation of the data 
may reduce classification accuracy. Deep learning, a sub-
discipline of machine learning, addresses this issue by 
embedding the computation of features into the machine 
learning model itself to yield end-to-end models11. This 
outcome has been realized through the development 
of deep neural networks, machine learning models that 
consist of successive elementary operations, which com-
pute increasingly more complex features by taking the 
results of preceding operations as input. Deep neural 
networks are able to improve prediction accuracy by 
discovering relevant features of high complexity, such 
as the cell morphology and spatial organization of cells 
in the above example.

The construction and training of deep neural net-
works have been enabled by the explosion of data, 
algorithmic advances and substantial increases in 
computational capacity, particularly through the use 
of graphical processing units (GPUs)12. Over the past 
7 years, deep neural networks have led to multiple per-
formance breakthroughs in computer vision13–15, speech 
recognition16 and machine translation17. Seminal studies 
in 2015 demonstrated the applicability of deep neural 
networks to DNA sequence data18,19 and, since then, 
the number of publications describing the application 
of deep neural networks to genomics has exploded. 
In parallel, the deep learning community has substan-
tially improved method quality and expanded its reper-
toire of modelling techniques, some of which are already 
starting to impact genomics.

Here, we describe deep learning modelling tech-
niques and their existing genomic applications. We 
start by presenting four major classes of neural net-
works (fully connected, convolutional, recurrent and 
graph convolutional) for supervised machine learning 
and explain how they can be used to abstract patterns 

Feature
An individual, measurable 
property or characteristic of a 
phenomenon being observed.

Handcrafted features
Features derived from raw  
data (or other features) using 
manually specified rules.  
Unlike learned features, they 
are specified upfront and  
do not change during model 
training. For example, the  
GC content is a handcrafted 
feature of a DNA sequence.
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common in genomics. Next, we describe multitask 
learning and multimodal learning, two modelling tech-
niques suited to integrating multiple data sets and data 
types. We then discuss transfer learning, a technique 
that enables rapid development of new models from 
existing ones, and techniques to interpret deep learning 
models, which are both crucial for genomics. We finish 
with a discussion of two unsupervised learning tech-
niques, autoencoders and generative adversarial networks 
(GANs), which first found application in single-cell 
genomics. To facilitate the adoption of deep learning by 
the genomics community, we provide pointers to code 
that ease rapid prototyping. For further background 
on deep learning, we refer readers to the deep learning 
textbook11. As complementary reading, we recommend 
a hands-on primer20 and several reviews that provide a 
broader perspective on deep learning, target computa-
tional biologists and cover applications of deep learning 
beyond genomics21–25.

Supervised learning
The goal of supervised learning is to obtain a model 
that takes features as input and returns a prediction for 
a so-called target variable. An example of a supervised 
learning problem is one that predicts whether an intron is 
spliced out or not (the target) given features on the RNA 
such as the presence or absence of the canonical splice 
site sequence, the location of the splicing branchpoint 
or intron length (FIg. 1). Training a machine learning 
model refers to learning its parameters, which typically 
involves minimizing a loss function on training data 
with the aim of making accurate predictions on unseen  
data (BoX 1).

Complex dependencies can be modelled with deep 
neural networks. For many supervised learning prob-
lems in computational biology, the input data can be rep-
resented as a table with multiple columns, or features, 
each of which contains numerical or categorical data that 
are potentially useful for making predictions. Some input 
data are naturally represented as features in a table (such 
as temperature or time), whereas other input data need 
to be first transformed (such as DNA sequence into k-mer 
counts) using a process called feature extraction to fit a 
tabular representation. For the intron-splicing prediction 
problem, the presence or absence of the canonical splice 
site sequence, the location of the splicing branchpoint 
and the intron length can be preprocessed features col-
lected in a tabular format. Tabular data are standard for a 
wide range of supervised machine learning models, rang-
ing from simple linear models, such as logistic regression8, 
to more flexible nonlinear models, such as neural net-
works and many others26–29. Logistic regression is a 
binary classifier, that is, a supervised learning model 
that predicts a binary target variable. Specifically, logistic 
regression predicts the probability of the positive class by 
computing a weighted sum of the input features mapped 
to the [0,1] interval using the sigmoid function, a type of 
activation function. The parameters of logistic regression, 
or other linear classifiers that use different activation 
functions, are the weights in the weighted sum. Linear 
classifiers fail when the classes, for instance, that of an 
intron spliced out or not, cannot be well discriminated 
with a weighted sum of input features (FIg. 1a).

To improve predictive performance, new input fea
tures can be manually added by transforming or com-
bining existing features in new ways, for example, by 
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Fig. 1 | neural networks with hidden layers used to model nonlinear dependencies. a | Shown is an example of splice 
site classification based on two RNA features. Depicted is a single-layer neural network with sigmoid activation function, 
which corresponds to logistic regression. It predicts the probability of the output being class 1 using a weighted sum  
(also called linear combination) of the input that is mapped to the [0,1] interval with a sigmoid function. In this example, 
the aim is to discriminate spliced-out from not-spliced-out introns as a function of the length of the intron and of the 
distance of the branchpoint to the acceptor site. If either the intron length or the branchpoint distance is too short or 
too long, splicing will not occur. Hence, linear combinations of these two features, as implemented in logistic regression, 
cannot separate the spliced (blue) from unspliced (orange) data points. b | Neural networks with intermediate layers, also 
called hidden layers, transform the inputs using intermediate nonlinear transformations into a space where the classes 
become linearly separable. The depicted layers are said to be fully connected because every neuron receives input from  
all neurons of the upstream layer. Deep neural networks are neural networks with many hidden layers.

End-to-end models
Machine learning models  
that embed the entire 
data-processing pipeline to 
transform raw input data into 
predictions without requiring  
a preprocessing step.

Deep neural networks
A wide class of machine 
learning models with a design 
that is loosely based on 
biological neural networks.

Fully connected
Referring to a layer  
that performs an affine 
transformation of a vector 
followed by application  
of an activation function to 
each value.

Convolutional
Referring to a neural network 
layer that processes data stored 
in n-dimensional arrays, such  
as images. The same fully 
connected layer is applied to 
multiple local patches of the 
input array. When applied to 
DNA sequences, a convolutional 
layer can be interpreted as a  
set of position weight matrices 
scanned across the sequence.

Recurrent
Referring to a neural network 
layer that processes sequential 
data. The same neural network 
is applied at each step of the 
sequence and updates a 
memory variable that is 
provided for the next step.

Graph convolutional
Referring to neural networks 
that process graph-structured 
data; they generalize 
convolution beyond regular 
structures, such as DNA 
sequences and images, to 
graphs with arbitrary 
structures. The same neural 
network is applied to each 
node and edge in the graph.

Autoencoders
Unsupervised neural networks 
trained to reconstruct the input. 
One or more bottleneck layers 
have lower dimensionality than 
the input, which leads to 
compression of data and forces 
the autoencoder to extract 
useful features and omit 
unimportant features in the 
reconstruction.

Generative adversarial 
networks
(GANs). Unsupervised learning 
models that aim to generate 
data points that are 
indistinguishable from the 
observed ones.
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taking powers or pairwise products. Neural networks use 
hidden layers to learn these nonlinear feature transforma-
tions automatically. Each hidden layer can be thought of 
as multiple linear models with their output transformed 
by a nonlinear activation function, such as the sigmoid 
function or the more popular rectified-linear unit (ReLU). 
Together, these layers compose the input features into 
relevant complex patterns, which facilitates the task of 
distinguishing two classes (FIg. 1b). Deep neural networks 
use many hidden layers, and a layer is said to be fully con-
nected when each neuron receives inputs from all neu-
rons of the preceding layer. Neural networks are typically 
trained using stochastic gradient descent, an algorithm 

suited to training models on very large data sets (BoX 1). 
Implementation of neural networks using modern deep 
learning frameworks enables rapid prototyping with 
different architectures and data sets (BoX 2).

Fully connected neural networks have been used for a 
number of genomics applications, which include predict-
ing the percentage of exons spliced in for a given sequence 
from sequence features such as the presence of binding 
motifs of splice factors or sequence conservation30,31; pri-
oritizing potential disease-causing genetic variants32; and 
predicting cis-regulatory elements in a given genomic 
region using features such as chromatin marks, gene 
expression and evolutionary conservation33,34. Many of 

Target
The desired output used to 
train a supervised model.

Loss function
A function that is optimized 
during training to fit machine 
learning model parameters. In 
the simplest case, it measures 
the discrepancy between 
predictions and observations. 
In the case of quantitative 
predictions such as regression, 
mean-squared error loss is 
frequently used, and for binary 
classification, the binary 
cross-entropy, also called 
logistic loss, is typically used.

k-mer
Character sequence of a 
certain length. For instance, 
a dinucleotide is a k-mer for 
which k = 2.

Logistic regression
A supervised learning 
algorithm that predicts the 
log-odds of a binary output 
to be of the positive class as  
a weighted sum of the input 
features. Transformation of  
the log-odds with the sigmoid 
activation function leads to 
predicted probabilities.

Sigmoid function
A function that maps real 
numbers to [0,1], defined as  
1/(1 + e −x).

Activation function
A function applied to an 
intermediate value x within 
a neural network. Activation 
functions are usually nonlinear 
yet very simple, such as 
the rectified-linear unit or the 
sigmoid function.

Regularization
A strategy to prevent 
overfitting that is typically 
achieved by constraining the 
model parameters during 
training by modifying the loss 
function or the parameter 
optimization procedure. 
For example, the so-called L2 
regularization adds the sum  
of the squares of the model 
parameters to the loss function 
to penalize large model 
parameters.

Hidden layers
Layers are a list of artificial 
neurons that collectively 
represents a function that take 
as input an array of real 
numbers and returns an array 
of real numbers corresponding 
to neuron activations. Hidden 
layers are between the input 
and output layers.

Box 1 | training neural networks for supervised learning

Data partitioning and prediction goal
a supervised learning data set consists of input–target pairs split into three distinct sets (see the figure, part a): one for 
optimizing the parameters of the model (training set), one for evaluating the model performance (validation set) and one 
for the final assessment of the best developed model (test set). During the model development phase, one only has access 
to the training and validation set. the goal is to develop a model with the most accurate predictions on the test set. 
The accuracy of predictions is measured by different evaluation metrics such as the Pearson correlation coefficient or 
spearman correlation coefficient for regression, area under the receiver operator curve for balanced binary classification 
or area under the precision-recall curve for imbalanced binary classification157. we note that the validation set and test 
set should be carefully chosen to represent truly unseen samples. For DNa-based models, this is typically implemented 
by leaving out complete chromosomes or all measurements in new cell types rather than randomly sampling the regions 
from the genome.

Fitting the parameters using the training set
Parameters of the neural network are first randomly initialized and then iteratively refined using a method called the 
stochastic gradient descent or its variations158,159. specifically, small random subsets, so-called batches, of input–target 
pairs of the training data set are iteratively used to make small updates on model parameters in trying to minimize the loss 
function between the predicted values and the observed targets (see the figure, part b). this minimization is performed by 
using the gradient of the loss function computed using the backpropagation algorithm160,161. There are two main benefits 
to taking only a small random subset of the training set at each optimization step rather than the full training set. First, the 
algorithm requires a constant amount of memory regardless of the data set size, which allows models to be trained on 
data sets much larger than the available memory. second, the random fluctuations between batches were demonstrated 
to improve the model performance by regularization162,163. As operations in neural networks including backpropagation 
involve matrix operations, graphical processing units (GPUs) can massively parallelize those operations and hence speed 
up model training by up to two orders of magnitude compared with normal central processing units12. in practice, 
specifying and training neural networks are achieved through the use of deep learning frameworks (BoX 2).

choosing the hyperparameters using the validation set
the training process is monitored by regularly evaluating the loss or the evaluation metric on the validation data  
set (see the figure, part c). when the metric stops improving or even starts degrading, training is stopped as the  
model starts to overfit the data. to improve the model performance on the validation data set, the modeller can  
adjust different hyperparameters, such as the number of layers of the network or batch size, and train a new model. 
This loop of experimenting with different hyperparameters can be automated using a simple random search164 or other 
hyperparameter optimization techniques165–168. Finally, after the modeller is satisfied with the performance on the 
validation set, the generalization performance of the best model or an ensemble of best models is evaluated on a 
completely separate test set.
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We refer interested readers to the deep learning book for more details11.
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these methods report improved predictive performance 
over methods such as linear regression, decision trees or 
random forests. However, it is important to note that, 
in many problems with tabular data, other methods 
such as gradient-boosted decision trees often outper-
form fully connected neural networks, as can be seen 
from the results of Kaggle machine learning competi-
tions. Nevertheless, fully connected layers constitute an 
essential building block in the deep learning toolbox and 
can be effectively combined with other neural network 
layers, such as convolutional layers.

Convolutions discover local patterns in sequential 
data. Local dependencies in spatial and longitudinal 
data must be taken into account for effective predictions. 
For example, shuffling a DNA sequence or the pixels of 
an image severely disrupts informative patterns. These 
local dependencies set spatial or longitudinal data apart 

from tabular data, for which the ordering of the features 
is arbitrary. Consider the problem of classifying genomic 
regions as bound versus unbound by a particular tran-
scription factor, in which bound regions are defined as 
high-confidence binding events in chromatin immuno
precipitation following by sequencing (ChIP–seq) 
data35–39. Transcription factors bind to DNA by recog-
nizing sequence motifs. A fully connected layer based on 
sequence-derived features, such as the number of k-mer 
instances or the position weight matrix (PWM) matches in 
the sequence40,41, can be used for this task. As k-mer or 
PWM instance frequencies are robust to shifting motifs 
within the sequence, such models could generalize well 
to sequences with the same motifs located at different 
positions. However, they would fail to recognize pat-
terns in which transcription factor binding depends 
on a combination of multiple motifs with well-defined 
spacing. Furthermore, the number of possible k-mers 
increases exponentially with k-mer length, which poses 
both storage and overfitting challenges.

A convolutional layer is a special form of fully con-
nected layer in which the same fully connected layer 
is applied locally, for example, in a 6 bp window, to all 
sequence positions. This approach can also be viewed 
as scanning the sequence using multiple PWMs42–44, for 
example, for transcription factors GATA1 and TAL1 
(FIg. 2a,b). By using the same model parameters across 
positions, the total number of parameters is drastically 
reduced, and the network is able to detect a motif at 
positions not seen during training. Each convolutional 
layer scans the sequence with several filters (FIg. 2b) by 
producing a scalar value at every position, which quanti-
fies the match between the filter and the sequence. As in 
fully connected neural networks, a nonlinear activation 
function (typically ReLU) is applied at each layer (FIg. 2c). 
Next, a pooling operation is applied, which aggregates 
the activations in contiguous bins across the positional 
axis, typically taking the maximal or average activation 
for each channel (FIg. 2d). Pooling reduces the effective 
sequence length and coarsens the signal. The subsequent 
convolutional layer composes the output of the previ-
ous layer and is able to detect whether a GATA1 motif 
and TAL1 motif were present at some distance range 
(FIg. 2e,f). Finally, the output of the convolutional layers 
can be used as input to a fully connected neural network 
to perform the final prediction task (FIg. 2 g,h). Hence, 
different types of neural network layers (for example, 
fully connected and convolutional) can be combined 
within a single neural network.

Three pivotal methods, DeepBind18, DeepSEA19 and 
Basset45, were the first convolutional neural networks 
(CNNs) applied to genomics data. In DeepBind, multiple 
single-task models (the median number of parameters 
was 1,586) were trained to predict binarized in vitro and 
in vivo binding affinities (that is, bound or not bound) 
of a transcription factor and the in vitro binding affin-
ity of an RNA-binding protein (RBP). The method 
consistently performed better than existing non-deep 
learning approaches. The DeepSEA model (52,843,119 
parameters) predicted the presence or absence of 919 
chromatin features, including transcription factor bind-
ing, DNA accessibility and histone modification given 

Box 2 | example code for training neural networks

Much of the success of deep learning can be attributed to deep learning frameworks such 
as Keras, tensorFlow102 or Pytorch101. Deep learning frameworks are software libraries that 
implement the operations required for building and training neural networks, including 
matrix multiplication, convolution and automatic differentiation. this enables users to 
specify the model architecture by composing multiple building blocks — layers — without 
having to manually derive the gradients required during training (BoX 1). Below is an 
example that implements the architectures from Figures 1 and 2 using Keras.

import keras.layers as kl 

from keras.models import Sequential 

# Fully connected model architecture (Figure 1)

model = Sequential([

 kl.Dense(3, activation='relu', input_shape=(2,)),

 kl.Dense(2, activation='relu'),

 kl.Dense(1, activation='sigmoid')])

# Convolutional neural network architecture (Figure 2)

model = Sequential([

 kl.Conv1D(2, activation='relu', input_shape=(4, 30), padding='same'),

 kl.MaxPool(6),

 kl.Conv1D(3, activation='relu', padding='same'),

 kl.GlobalMaxPool(),

 kl.Dense(1, activation='sigmoid')])

# Specify optimizer, loss and evaluation metric

model.compile(optimizer='adam',

 loss='binary_crossentropy',

 metrics=['accuracy'])

# Load the dataset

x, y = load_dataset(...)

# Train the model for 10 epochs

model.fit(x, y, epochs=10) 

Thanks to these frameworks, users can focus on designing the model architecture 
without having to manually derive the optimization procedure, which makes prototyping 
new model architectures easy and decouples the model choice from the optimization 
algorithm. Furthermore, the frameworks enable training of models on GPUs without 
using extra code. Moreover, as the specification of the architecture is standardized, 
models and model components can be easily exchanged.

we refer the reader to DragoNN for end-to-end examples of how to implement, train, 
evaluate and interpret convolutional neural network models based on DNA sequence 
using Keras.

Rectified-linear unit
(ReLU). Widely used activation 
function defined as max(0, x).

Neuron
The elementary unit of a neural 
network. An artificial neuron 
aggregates the inputs from 
other neurons and emits an 
output called activation. Inputs 
and activations of artificial 
neurons are real numbers. The 
activation of an artificial neuron 
is computed by applying a 
nonlinear activation function to 
a weighted sum of its inputs.
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a 1,000 bp sequence. Basset (4,135,064 parameters) 
predicted 164 binarized DNA accessibility features 
(for example, as accessible or inaccessible) given a 600 bp 
sequence. Both methods performed substantially better 
than the k-mer-based approach gkm-SVM41.

Since their initial applications, CNNs have been 
applied to predict various molecular phenotypes on the 
basis of DNA sequence alone and have become the new 
state-of-the-art models. Applications include classifying 
transcription factor binding sites46 and predicting mol
ecular phenotypes such as chromatin features47, DNA 
contact maps48, DNA methylation49,50, gene expression51, 
translation effiency52, RBP binding53–55 and microRNA 
(miRNA) targets56. In addition to predicting molecular 
phenotypes from the sequence, CNNs have been suc-
cessfully applied to more technical tasks traditionally 
addressed by handcrafted bioinformatics pipelines. For 
example, they have been utilized to predict the specific-
ity of guide RNA57, denoise ChIP–seq58, enhance Hi-C 
data resolution59, predict the laboratory of origin from 
DNA sequences60 and call genetic variants61,62.

CNNs have also been employed to model long-range 
dependencies in the genome47. Although interacting 

regulatory elements may be distantly located on the 
unfolded linear DNA sequence, these elements are often 
proximal in the actual 3D chromatin conformation. 
Hence, modelling molecular phenotypes from the lin-
ear DNA sequence, albeit a crude approximation of the 
chromatin, can be improved by allowing for long-range 
dependencies and allowing the model to implicitly 
learn aspects of the 3D organization, such as promoter–
enhancer looping. In Basenji47 this is achieved by using 
dilated convolutions, which enabled a receptive field of 
32 kb to be achieved. Dilated convolutions have also 
allowed splice sites to be predicted from sequence using 
a receptive field of 10 kb, thereby enabling the integra-
tion of genetic sequence across distances as long as 
typical human introns63.

Recurrent neural networks model long-range depend-
encies in sequences. Different types of neural net-
work can be characterized by their parameter-sharing 
schemes. For example, fully connected layers have no 
parameter sharing (FIg. 3a), whereas convolutional lay-
ers impose translational invariance by applying the 
same filters at every position of their input (FIg. 3b). 

Linear regression
A supervised learning algorithm 
that predicts the output as a 
weighted sum of the input 
features.

Decision trees
Supervised learning algorithms 
in which the prediction is made 
by making a series of decisions 
of type ‘is feature i larger than 
x’ (internal nodes of the tree) 
and then predicting a constant 
value for all points satisfying 
the same decisions series 
(leaf nodes).

Random forests
Supervised learning algorithms 
that train and average the 
predictions of many decision 
trees.
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Fig. 2 | Modelling transcription factor binding sites and spacing with convolutional neural networks. The depicted 
convolutional neural network predicts the binding affinity of the TAL1–GATA1 transcription factor complex. a | One-hot 
encoded representation of the DNA sequence. b | The first convolutional layer scans the input sequence using filters, which 
are exemplified by position weight matrices of the GATA1 and TAL1 transcription factors. c | Negative values are truncated 
to 0 using the rectified-linear unit (ReLU) activation function. d | In the max pooling operation, contiguous bins of the 
activation map are summarized by taking the maximum value for each channel in each bin. e | The second convolutional 
layer scans the sequence for pairs of motifs and for instances of individual motifs. f | Similarly to that of the first convolution, 
ReLU activation function is applied. g | The maximum value across all positions for each channel is selected. h | A fully 
connected layer is used to make the final prediction.
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Recurrent neural networks (RNNs)64,65 are an alterna-
tive to CNNs for processing sequential data, such as 
DNA sequences or time series, that implement a differ-
ent parameter-sharing scheme. RNNs apply the same 
operation to each sequence element (FIg. 3c). The opera-
tion takes as input the memory of the previous sequence 
element and the new input. It updates the memory and 
optionally emits an output, which is either passed on 
to subsequent layers or is directly used as model pre-
dictions. By applying the same model at each sequence 
element, RNNs are invariant to the position index in the 
processed sequence. For example, an RNN could detect 
an open reading frame in a DNA sequence regardless 
of the position in the sequence. This task requires the 
recognition of a certain series of inputs, such as the start 
codon followed by an in-frame stop codon. The main 
advantage of RNNs over CNNs is that they are, in theory, 
able to carry over information through infinitely long 
sequences via memory. Furthermore, RNNs can natu
rally process sequences of widely varying length, such 
as mRNA sequences. However, recent systematic 
comparisons show that CNNs combined with various 
tricks (such as dilated convolutions) are able to reach 
comparable or even better performances than RNNs on 
sequence-modelling tasks, such as audio synthesis and 
machine translation66. Moreover, because RNNs apply a 
sequential operation, they cannot be easily parallelized 
and are hence much slower to compute than CNNs.

In genomics, RNNs have been used to aggregate 
the outputs of CNNs for predicting single-cell DNA 
methylation states50, RBP binding67, transcription fac-
tor binding and DNA accessibility68,69. RNNs have also 

found applications in miRNA biology: deepTarget70 per-
formed better than existing models at predicting miRNA 
binding targets from mRNA–miRNA sequence pairs, 
and deepMiRGene71 better predicted the occurrence of 
precursor miRNAs from the mRNA sequence and its 
predicted secondary structure than existing methods 
that use handcrafted features. Base calling from raw 
DNA-sequencing data is another prediction task for 
which RNNs have been applied. DeepNano72 accurately 
predicted base identity from changes in electric current 
measured by the Oxford Nanopore MinION sequencer73. 
Despite these numerous applications of RNNs, we note 
that there is a lack of systematic comparison of recur-
rent and convolutional architectures for the common 
sequence-modelling tasks in genomics.

Graph-convolutional neural networks model depend-
encies in graph-structured data. Graph-structured 
data, including protein–protein interaction networks 
and gene regulatory networks, are ubiquitous in geno
mics74,75. Graph convolutional neural (GCN) networks76–79 
(FIg. 3d) use the individual features of nodes in a graph 
and the node connectivity to solve machine learning 
tasks on graphs. GCNs sequentially apply multiple graph 
transformations (layers), whereby each graph transfor-
mation aggregates features from the neighbouring nodes 
or edges in a nonlinear manner and represents nodes or  
edges with a new set of features. Tasks that GCNs can 
be trained for include node classification80,81, unsuper-
vised node embedding (which aims to find informa-
tive, low-dimensional representation of nodes)80, edge 
classification and graph classification79.

Parameterized information flow Link Node in the neural network (scalar or tensor)

Network type Fully connected Convolutional Recurrent Graph convolutional

a b c d

Input
example 

Predefined features such as
number of k-mer matches,
total conservation

• DNA sequence
• Amino acid sequence
• Image

• DNA sequence
• Amino acid sequence
• Time series measurements

• Protein–protein interaction network
• Citation network
• Protein structure

Invariance – Translation Time Node index permutation

Input

Output

Parameters

Fig. 3 | neural network layers and their parameter-sharing schemes. Neural network architectures can be categorized 
into four groups based on their connectivity and parameter-sharing schemes. a | Fully connected layers assume that 
input features do not have any particular ordering and hence apply different parameters across different input features.  
b | Convolutional layers assume that local subsets of input features, such as consecutive bases in DNA , can represent 
patterns. Therefore, the connectivity and parameter-sharing pattern of convolutional layers reflect locality. c | Recurrent 
layers assume that the input features should be processed sequentially and that the sequence element depends on all the 
previous sequence elements. At each sequence element, the same operation is applied (blue and orange arrows), and 
the information from the next input sequence element is incorporated into the memory (orange arrows) and carried over.  
d | Graph convolutional networks assume that the structure of the input features follows the structure of a known graph.  
The same set of parameters is used to process all the nodes and thereby imposes invariance to node ordering. By exploiting 
the properties of the raw data, convolutional neural networks, recurrent neural networks and graph convolutional layers  
can have drastically reduced numbers of parameters compared with fully connected layers while still being able to 
represent flexible functions. The same colours indicate shared parameters, and arrows indicate the flow of information. 
Full lines indicate specific ordering or relationships between features represented as nodes (parts a–d).

Gradient-boosted decision 
trees
Supervised learning algorithms 
that train multiple decision 
trees in a sequential manner; 
at each time step, a new 
decision tree is trained on the 
residual or pseudo-residual  
of the previous decision tree.

Position weight matrix
(PWM). A commonly used 
representation of sequence 
motifs in biological sequences. 
It is based on nucleotide 
frequencies of aligned 
sequences at each position 
and can be used for identifying 
transcription factor binding 
sites from DNA sequence.

Overfitting
The scenario in which the 
model fits the training set very 
well but does not generalize 
well to unseen data. Very 
flexible models with many  
free parameters are prone to 
overfitting, whereas models 
with many fewer parameters 
than the training data do  
not overfit.
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GCNs have been applied to a number of biological 
and chemical problems. For instance, one method used 
an unsupervised approach to derive new features of pro-
teins from protein–protein interaction networks in an 
unsupervised manner, and these features were then used 
to predict protein function in different tissues82. GCNs 
have also been used for modelling polypharmacy side 
effects83. In chemistry, graph convolutions have been 
successfully used to predict various molecular properties 
including solubility, drug efficacy and photovoltaic effi-
ciency84,85. Genomic applications of GCNs include pre-
dicting binarized gene expression given the expression 
of other genes86 or classification of cancer subtypes87. 
GCNs provide promising tools for exploiting structural 
patterns of graphs for supervised and unsupervised 
machine learning problems, and we expect to see more 
genomics applications in the future.

Sharing information across tasks and integrating 
data modalities. Genomic data often contain correlated 
measurements of related biological activities. Correlated 
measurements can occur within a single data type (such 
as the expression of co-regulated genes) or across dif-
ferent data types (such as ChIP–seq peaks and DNase I 
hypersensitive sites sequencing (DNase-seq) peaks) and 
give rise to related prediction tasks.

Consider an example in which we would like to pre-
dict transcription factor binding affinity for multiple 
transcription factors. Instead of building a single-task 
model for each prediction task (FIg. 4a), a multitask model 
can jointly predict binding of multiple transcription 
factors (FIg. 4b). In such models, the majority of layers 
are shared and branch out to task-specific layers at the 
end (FIg. 4b). Owing to co-binding and common protein 
domains of the modelled transcription factors, using the 
same layers to extract complex sequence features across 
multiple transcription factors might improve the predic-
tive performance and require less data per transcription 
factor. Moreover, by sharing the computation between 
tasks, multitask models can make predictions faster than 
single-task models can.

In multitask models, the overall loss function is simply 
the sum of the losses for each task. When losses are very 
different across tasks, a weighted sum can be used to bal-
ance the losses88. Training multitask models can be chal-
lenging, as the network needs to simultaneously optimize 
multiple losses and hence make trade-offs. For example, 
if class imbalance varies greatly across tasks, the network 
might successfully learn only the well-balanced classes 
and completely ignore the difficult imbalanced classes by 
always predicting the majority class. Various strategies 
have been proposed to tackle this issue88–91. For example, 
GradNorm88 adopts task weights during training that 
ensure the backpropagated gradients corresponding to 
different tasks will be of equal magnitude. In genom-
ics, multitask models have been successfully used to 
simultaneously predict multiple molecular phenotypes 
such as those for transcription factor binding, different 
histone marks, DNA accessibility and gene expression in 
different tissues19,45,47,51.

Analogously to multitask models, deep neural net-
works can be easily extended to take multiple data 

modalities as inputs in order to leverage complementary 
information between them. A simple way to integrate 
multiple data modalities is to concatenate features from 
each data set (often referred to as early integration). Such 
concatenation might not be possible with raw data when 
the data modalities are very different (such as a DNA 
sequence combined with an image or gene expression). 
Neural networks enable multiple data modalities to be 
integrated by first processing each data modality using 
dedicated layers, concatenating the outputs of dedi-
cated layers and then using further layers to integrate 
the features extracted from each data modality (FIg. 4c). 
This approach, also known as intermediate integration, 
enables the most suitable dedicated layers to be used for 
each data modality and can hence extract more predic-
tive features. Both early integration and intermediate 
integration approaches (individually or in combination) 
have been used by different neural network models in 
genomics. For example, DNA sequence, gene expres-
sion and chromatin accessibility have been integrated 
to predict transcription factor binding across cell types69. 
In addition, an RNA sequence has been integrated with 
RNA secondary structure55 or distances to key genomic 
landmarks such as splice sites54 to predict in vivo affinity 
of RBPs. Another example is the prediction of the patho
genicity of missense variants by integrating amino acid 
sequences with multiple conservation scores92. We refer 
the reader to Zitnik et al.93 for more information on data 
integration with machine learning models.

Training models on small data sets with transfer learn-
ing. In the scenario in which data are scarce, training 
a model from scratch might not be feasible. Instead, 
the model can be initialized with the majority of para
meters from another model trained on a similar task. 
This approach is called transfer learning94 and can be 
viewed as incorporating prior knowledge into the model 
(FIg. 4d). In the simplest case, in which the parameters of 
the source model are not modified during training, this 
approach can be seen as building a separate model on top 
of features extracted by the source model. Transferred 
models can learn new tasks more rapidly, require less 
data to train and generalize better to unseen data than 
models trained from scratch using randomly initial-
ized parameters95. In biological image analysis, pre-
trained models from the ImageNet competition96 were 
successfully adopted to classify skin lesions97, perform 
morphological profiling98 and analyse in situ hybridi-
zation images99,100. In genomics, the utility of transfer 
learning has been demonstrated for sequence-based 
predictive models of chromatin accessibility45. In this 
study, researchers trained the multitask Basset model 
for predicting binary chromatin accessibility profiles  
of 149 cell types. They then trained single-task models of  
chromatin accessibility in 15 other cell types using 
parameters from the multitask model for initialization. 
The predictive performance was greater for models 
initialized with transferred parameters than for mod-
els initialized with random parameters45. We note that 
extensive evaluations of how many parameters to share 
and which models to use for different tasks are still 
lacking and will require further investigation.

Filters
Parameters of a convolutional 
layer. In the first layer of a 
sequence-based convolutional 
network, they can be 
interpreted as position weight 
matrices.

Pooling operation
A function that replaces the 
output at a certain location 
with a summary statistic of the 
nearby outputs. For example, 
the max pooling operation 
reports the maximum output 
within a rectangular 
neighbourhood.

Channel
An axis other than one of the 
positional axes. For images, the 
channel axis encodes different 
colours (such as red, green and 
blue), for one-hot-encoded 
sequences (A: [1, 0, 0, 0],  
C: [0, 1, 0, 0] and so on), it 
denotes the bases (A, C, G  
and T), and for the output of the 
convolutions, it corresponds to 
the outputs of different filters.

Dilated convolutions
Filters that skip some values  
in the input layers. Typically, 
each subsequent convolutional 
layer increases the dilation by 
a factor of two, thus achieving  
an exponentially increasing 
receptive field with each 
additional layer.

Receptive field
The region of the input that 
affects the output of a 
convolutional neuron.

Memory
An array that stores the 
information of the patterns 
observed in the sequence 
elements previously processed 
by a recurrent neural network.
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To realize the full potential of transfer and multitask 
learning, trained models must be easily shared. In the 
fields of computer vision and natural language process-
ing, trained models are shared through repositories called 
model zoos and are available for popular machine learning 
frameworks, for example PyTorch model zoos101, Keras 
model zoos and Tensorflow model zoos102. We and others 
recently developed Kipoi, a model zoo for genomics103, 
to address the lack of a platform for exchanging models. 
Kipoi contains over 2,000 predictive models for genomics 
and allows the user to access, apply and interpret these 
predictive models through a unified interface as well as 
score the effect of single-nucleotide variants for a subset 
of sequence-based models. As the size and the number of 
data sets grow and predictive models become more accu-
rate and essential, we expect to see a greater emphasis 
on model distribution, similar to the improvement  
in data and software sharing over the past decade.

Explaining predictions
Although deep neural networks are not designed to 
highlight interpretable relationships in data or to guide 
the formulation of mechanistic hypotheses, they can 
nevertheless be interrogated for these purposes a pos-
teriori104. We refer to these interrogations of the models 
as model interpretation. In simple models such as linear 
models, the parameters of the model often measure the 
contribution of an input feature to prediction. Therefore, 
they can be directly interpreted in cases where the 
input features are relatively independent. By contrast, 
the parameters of a deep neural network are difficult 
to interpret because of their redundancy and nonlinear 
relationship with the output. For example, although the 
CNN presented in FIg. 2 may be interpreted as multiple 
PWMs scanning the sequence, the filters representing 
the PWM in the first layer typically only represent parts 
of the motifs. The reason for this phenomenon is that 
individual filters are never forced to learn complete 
motifs. Rather, the network as a whole can detect motifs 
by assembling multiple filters in the downstream layers.

Feature importance scores interrogate input–output  
relationships. In complex models, it is imperative to 
inspect parameters indirectly by probing the input–
output relationships for each predicted example. 
Feature importance scores, also called attribution scores, 
relevance scores or contribution scores, can be used for 
this purpose. They highlight the parts of a given input 
that are most influential for the model prediction and 

thereby help to explain why such a prediction was made 
(FIg. 5a). In DNA sequence-based models, the impor-
tance scores highlight sequence motifs and are hence 
widely used in genomics18,45,47. They can also be used to 
probe more complex epistatic interactions105. We refer 
to feature importance scores as scores generated per 
example, and they should not be confused with the fea-
ture importance for supervised models based on tabular 
data like those of random forests, which are aggregated 
across the entire data set.

Feature importance scores can be divided into two 
main categories on the basis of whether they are com-
puted using input perturbations or using backpropagation. 
Perturbation-based approaches systematically per-
turb18,19,45,106 the input features and observe the change 
in the output (FIg. 5b). For DNA sequence-based mod-
els, the induced perturbation can be, for example, a 
single-nucleotide substitution18,19 or an insertion of a regu
latory motif45. The main drawback of perturbation-based 
importance scores is the high computational cost, which 
becomes notable when the importance scores for the whole 
data set need to be computed. For example, a sequence of 
1,000 nt requires an additional 3,000 model predictions 
to assess the effect of every possible single-nucleotide var-
iant. Backpropagation-based approaches107,108, to the con-
trary, are much more computationally efficient. In these 
approaches, importance scores for all the input features 
are computed using a single backpropagation pass through 
the network (FIg. 5c), and hence they require only twice the  
amount of computation as a single prediction. The sim-
plest backpropagation-based importance scores are 
saliency maps107 and input-masked gradients108. As deep 
learning frameworks support automatic differentiation 
(BoX 2), these scores can be efficiently implemented in a 
few lines of code.

One issue with saliency maps, input-masked gra-
dients or perturbation-based methods is the so-called 
neuron saturation problem. Consider a neural net-
work that classifies a sequence as positive if it observes 
a TAL1 transcription factor motif. If there are actu-
ally two TAL1 motifs in the sequence, one of them 
could be deleted, and the model prediction would not 
change. In the case of perturbation-based gradients or 
input-masked gradients, the importance scores would 
be low for both TAL1 motifs, as they are individually 
not necessary for the prediction. To address this fail-
ure mode, so-called reference-based methods like 
DeepLIFT108 and integrated gradients109 were developed. 
These methods compare the input features with their 
‘reference’ values and thereby avoid the saturation issue. 
In the case of DNA sequences, a reasonable reference 
value is the dinucleotide-shuffled version of the original 
sequence. We note that a rigorous benchmark of fea-
ture importance scores and different reference values in 
genomics are currently lacking. Therefore, we recom-
mend trying multiple methods and comparing them 
with some well-understood examples or simulated data.

Sequence motif discovery. Motif discovery is an essen-
tial component of the bioinformatics workflow when 
regulatory DNA sequences are analysed. Although fea-
ture importance scores are able to highlight the instances 

Feature importance scores
The quantification values of  
the contributions of features  
to a current model prediction. 
The simplest way to obtain this 
score is to perturb the feature 
value and measure the change 
in the model prediction: 
the larger the change found, the 
more important the feature is.

Backpropagation
An algorithm for computing 
gradients of neural networks. 
Gradients with respect to the 
loss function are used to 
update the neural network 
parameters during training.

Saliency maps
Feature importance scores 
defined as the gradient 
absolute values of the model 
output with respect to the 
model input.

Input-masked gradients
Feature importance scores 
defined as the gradient of the 
model output with respect  
to the model input multiplied 
by the input values.

Automatic differentiation
A set of techniques, which 
consist of a sequence of 
elementary arithmetic 
operations, used to 
automatically differentiate  
a computer program.

Fig. 4 | Multitask models, multimodal models and transfer learning. a | Shown is a 
single-task model predicting the binding of a single transcription factor (green oval).  
b | A multitask model is shown that simultaneously predicts binding for two transcription 
factors (green oval and red diamond). There are three submodels depicted: a common 
submodel and two task-specific submodels. c | A multimodal model is shown that takes  
as input DNA sequence and chromatin accessibility. Each data modality is first processed 
using a dedicated submodel, and the outputs are concatenated and processed using the 
shared submodel. Parameters of all submodels are trained jointly as shown in both parts b 
and c. d | Transfer learning is presented. Parameters of the original model trained on a 
large data set (top) are used for initialization for the second model trained on a related 
task (target task) but with much less data available (bottom). In this example, the first task 
of the source model is similar to the target task (both are ovals); hence, the transferred 
submodel may contain features useful for the target task prediction.

◀
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of different motifs18,45,47,110, they have so far been used 
only to manually inspect individual sequences and not 
to perform automated motif discovery. Simply aver-
aging the importance scores across multiple examples 
will not yield the desired results because the motif is 
not always located at the same position in the input 
sequence. Owing to this issue, many studies45,49,50,54 have 
derived motifs from sequences by aggregating sequences 
in the training set that strongly activated filters of the 
first convolutional layer or interpreted filters directly as 
motifs52. Recently, a promising approach to aggregate the 
importance scores called TF-MoDISco was proposed111. 
TF-MoDISco extracts, aligns and clusters the regions of 
high importance into sequence motifs. Unlike classical 
motif discovery, which relies only on plain sequences, 
TF-MoDISco relies on the predictive model to highlight 
the important regions within the sequence via feature 
importance scores, which guides motif discovery.

Neural networks with interpretable parameters 
and activations. An approach termed ‘visible neural 
networks’ has recently been proposed with the DCell 
model112 to improve the interpretability of internal 
neural network activations. The model architecture  
of DCell corresponds to the hierarchical organization of  
known molecular subsystems within the cell. Nodes in 

the neural network correspond to molecular subsystems, 
such as signalling pathways or large protein complexes, 
and connections between two nodes (systems) are only 
permitted if the upstream system (for example, a small 
protein complex) is part of the downstream system (such 
as a large protein complex). The neurons in the neural 
network correspond to known concepts; hence, their 
activations and parameters can be interpreted. We note  
that this approach is only feasible for tasks in which  
the underlying entities and their hierarchical structure 
are sufficiently well known; it may not be directly appli-
cable to tasks for which the entities or their hierarchical 
structure are generally unknown, as in the case of trans
cription factor binding. It will be interesting to see to 
what extent this approach can be applied in the future 
to other models and also how it can be combined with 
modular modelling approaches (such as ExPecto51) to 
tackle predicting and understanding more complex  
phenotypes such as disease.

Unsupervised learning
The goal of unsupervised learning is to character-
ize unlabelled data by learning the useful properties 
of the data set. Classic unsupervised machine learn-
ing methods include clustering algorithms such as 
k-means and dimensionality reduction methods such 
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Fig. 5 | Model interpretation via feature importance scores. a | Feature importance scores highlight parts of the 
input most predictive for the output. For DNA sequence-based models, these can be visualized as a sequence logo of 
the input sequence, with letter heights proportional to the feature importance score, which may also be negative 
(as visualized by letters facing upside down). There are two classes of feature importance scores: perturbation-based 
approaches (part b) and backpropagation-based approaches (part c). b | Perturbation-based approaches perturb each 
input feature (left) and record the change in model prediction (centre) in the feature importance matrix (right). For DNA 
sequences, the perturbations correspond to single base substitutions18. Alternatively , the perturbation matrix can be 
visualized as a sequence logo with the letter heights corresponding to the average per-base perturbation impact. c | Backpropagation- 
based approaches compute the feature importance scores using gradients107 or augmented gradients such as DeepLIFT108 
for the input features with respect to model prediction.

Model architecture
The structure of a neural 
network independent of its 
parameter values. Important 
aspects of model architecture 
are the types of layers, their 
dimensions and how they are 
connected to each other.

k-means
An unsupervised method for 
partitioning the observations 
into clusters by alternating 
between refining cluster 
centroids and updating cluster 
assignments of observations.
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as principal component analysis, t-distributed stochastic  
neighbour embedding (t-SNE) or latent variable models. 
Neural networks are able to generalize some of these 
approaches. For example, autoencoders113,114,115,116 embed 
the data into a low-dimensional space with a hidden 
layer, called the bottleneck layer, and reconstruct the orig-
inal input data (FIg. 6a). This approach forces the network 
to extract useful features of data, as the bottleneck layer 
makes it infeasible to learn the perfect reconstruction. 
Reconstructing the data is often interpreted as denois-
ing because the unimportant variations are automati-
cally left out (FIg. 6b). Principal component analysis is 
equivalent to a linear autoencoder117,118,119, in which the 
principal components correspond to the representations 
in the bottleneck layer. Multiple nonlinear layers gener-
alize linear autoencoders to a nonlinear dimensionality 
reduction method.

Autoencoders have been used to impute missing 
data120, extract gene expression signatures121–123 and 
detect expression outliers124 in microarray data and bulk  
RNA sequencing gene expression data. In the field of 

single-cell genomics, autoencoders have been used for 
imputation, dimensionality reduction and representa-
tion learning125–130. Furthermore, prior biological knowl-
edge has been incorporated into the autoencoder 
architecture in order to infer a new representation that 
improves clustering and visualization of cells from single- 
cell RNA sequencing (scRNA-seq) data131. Specific noise 
characteristics of scRNA-seq data, such as sparse count 
data, are also addressed with tailored loss functions 
within the autoencoder framework130.

Neural networks have also greatly contributed to 
the toolbox of generative models. Unlike the approaches 
described earlier, generative models aim to learn the 
data-generating process. Variational autoencoders132 
(VAEs) and GANs133 are two powerful generative 
approaches that have emerged in the deep learning 
field. VAEs are autoencoders with additional distribu-
tion assumptions that enable them to generate new ran-
dom samples11, and they have been applied to single-cell 
and bulk RNA sequencing data to find meaningful pro
babilistic latent representations134–137. These methods 
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Fig. 6 | Unsupervised learning. a | An autoencoder consists of two parts: an encoder and a decoder. The encoder 
compresses the input data (depicted as gene expression of differentiating single cells) into a fewer (two shown here) 
dimensions in the so-called bottleneck layer. The decoder tries to reconstruct the original input from the compressed  
data in the bottleneck layer. Reconstruction accuracy is quantified by the loss function between the original data and  
the reconstructed data. Although the pseudotime estimation is not a property of autoencoders, the denoising effect of 
reconstruction can make the underlying structure of the data (for example cellular differentiation process) clearer130.  
b | The bottleneck layer is a low-dimensional representation of the original input revealing the cell differentiation process. 
c | Generative adversarial networks consist of generator and discriminator neural networks that are trained jointly. 
The discriminator classifies whether a given data point was drawn from the real data (circles) or whether it was 
synthetically generated (triangles). The generator aims to generate realistic samples and thereby tries to deceive the 
discriminator into mistakenly classifying synthetic samples as real.

Principal component 
analysis
An unsupervised learning 
algorithm that linearly projects 
data from a high-dimensional 
space to a lower-dimensional 
space while retaining as much 
variance as possible.

t-Distributed stochastic 
neighbour embedding
(t-SNE). An unsupervised 
learning algorithm that projects 
data from a high-dimensional 
space to a lower-dimensional 
space (typically 2D or 3D) in a 
nonlinear fashion while trying 
to preserve the distances 
between points.
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demonstrate that either denoised reconstruction or 
low-dimensional representation of the single-cell data 
improves commonly performed unsupervised learn-
ing tasks such as visualization and clustering. Another 
approach, which uses vector arithmetic with VAE latent 
representations, was reported to predict cell type-specific 
and species-specific perturbation responses of single 
cells138. We note that the performances of VAEs and 
other models based on neural networks strongly depend 
on the choice of hyperparameters139.

GANs were proposed as a radically different approach 
to generative modelling that involves two neural net-
works, a discriminator and a generator network. They  
are trained jointly, whereby the generator aims to gen-
erate realistic data points, and the discriminator classi-
fies whether a given sample is real or generated by the 
generator (FIg. 6c). As a relatively new method, applica-
tion of GANs is currently rather limited in genomics. 
They have been used to generate protein-coding DNA 
sequences140 and to design DNA probes for protein 
binding microarrays. It has been reported that GANs 
are capable of generating sequences that are superior 
to those in the training data set, as measured by higher 
protein binding affinity141. In the field of single-cell 
genomics, GANs have been used to simulate scRNA-seq 
data and dimensionality reduction142. Furthermore, 
the authors interpreted the internal representation 
of GANs through perturbations. In MAGAN143, the 
authors addressed the challenging problem of aligning 
data sets from different domains, that is, CyTOF data 
and scRNA-seq data, using an architecture consisting 
of two GANs.

Impact in genomics
Deep learning methods, both supervised and unsuper-
vised, have found various applications in genomics. Here, 
we highlight three key areas in which we expect them to 
have the largest impact now and in the near future.

Predicting the effect of non-coding variants. Models 
that can predict molecular phenotypes directly from 
biological sequences can be used as in silico pertur-
bation tools to probe the associations between genetic 
variation and phenotypic variation and have emerged 
as new methods for quantitative trait loci identification 
and variant prioritization. These approaches are of major 
importance given that the majority of variants identi-
fied by genome-wide association studies of complex 
phenotypes are non-coding144, which makes it chal-
lenging to estimate their effects and contribution to 
phenotypes. Moreover, linkage disequilibrium results 
in blocks of variants being co-inherited, which creates 
difficulties in pinpointing individual causal variants. 
Thus, sequence-based deep learning models that can be 
used as interrogation tools for assessing the impact of 
such variants offer a promising approach to find poten-
tial drivers of complex phenotypes. Examples include 
DeepSEA19, Basenji47 and ExPecto51, which predict the 
effect of non-coding single-nucleotide variants and short 
insertions or deletions (indels) indirectly from the differ-
ence between two variants in terms of transcription fac-
tor binding, chromatin accessibility or gene expression 

predictions. Furthermore, state-of-the-art models for 
predicting novel splice site creation63 from sequence 
or quantitative effects of genetic variants on splicing145 
are deep learning models. Additionally, end-to-end 
approaches for variant effect predictions are beginning 
to appear and have been successfully applied to predict 
the pathogenicity of missense variants92 from protein 
sequence and sequence conservation data.

Deep learning as a fully data-driven refinement of 
bioinformatics tools. Thanks to their flexibility, deep 
neural networks can be trained to carry out tasks that 
have traditionally been addressed by specific bioinfor-
matics algorithms. Training computer programs instead 
of manually programming them has been shown to yield 
a significant increase in accuracy in tasks including vari-
ant calling61,62, base calling for novel sequencing techno
logies72, denoising ChIP–seq data58 and enhancing Hi-C 
data resolution59. An additional advantage is that such 
programs are able to leverage GPUs without the need to 
write additional code.

Richer representations to reveal the structure of 
high-dimensional data. In addition to using deep 
learning as a powerful tool to make accurate predictions, 
its use in unsupervised settings has given rise to some  
important applications. Unlike other nonlinear dimen-
sionality reduction methods, such as t-SNE, autoencoders  
are parametric and can therefore easily be applied to 
unseen data with similar distributions to the training 
set146. They are highly scalable because the training pro-
cedure only requires a small subset of the data at every 
training step (BoX 1), which is particularly important for 
fields such as single-cell genomics, in which the num-
ber of training examples can now surpass hundreds of 
thousands147. In addition, unsupervised deep learning 
techniques can help to characterize data sets for which 
it is not trivial to obtain labels, for example, to enable a 
data-driven definition of cell identities and states from 
scRNA-seq data. Finally, unsupervised methods can 
also be used to integrate scRNA-seq data from different  
sources129,134,138,143,148, which is increasingly important not 
only because of growing data sets for similar tissues but 
also because of the generation of the first organ atlases,  
such as the Human Cell Atlas project149.

Conclusions and future perspectives
The uptake of deep learning in genomics has resulted 
in early applications with both scientific and economic 
relevance. Multiple companies and industry research 
groups are being founded, often under the broader label 
of artificial intelligence, based on the anticipated eco-
nomic impact of genomic deep learning on diagnostics 
and drug development and on its easy integration with 
imaging data150. In particular, pharmacogenomics may 
profit from more efficient and automated identification 
of novel regulatory variants in the genome and from 
more accurate predictions of drug responses and targets 
using epigenomics data151.

Regardless of their quantitative advantages (or dis-
advantages) over alternative methods, some of the 
qualitative aspects of deep learning will remain relevant 

Latent variable models
Unsupervised models 
describing the observed 
distribution by imposing latent 
(unobserved) variables for  
each data point. The simplest 
example is the mixture of 
Gaussian values.

Bottleneck layer
A neural network layer that 
contains fewer neurons than 
previous and subsequent 
layers.

Generative models
Models able to generate points 
from the desired distribution. 
Deep generative models are 
often implemented by a neural 
network that transforms 
samples from a standard 
distribution (normal and 
uniform) into samples from 
a complex distribution (gene 
expression levels or sequences 
that encode a splice site).

Hyperparameters
Parameters specifying the 
model or the training 
procedure that are not 
optimized by the learning 
algorithm (for example, by the 
stochastic gradient descent 
algorithm). Examples of 
hyperparameters are the 
number of layers, regularization 
strength, batch size and the 
optimization step size.
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for genomics. One of these qualitative advantages is  
end-to-end learning. Data preprocessing steps can 
be time-consuming and error prone, especially in the 
genomics field because of the variety of experimental  
data sources. Being able to integrate multiple pre
processing steps into a single model and to ‘let the data 
speak’ when defining features are important advantages 
that often increase predictive power. We expect end-to-
end learning approaches to become more widely used 
across genomics, including protein structure predic-
tion152. Another qualitative advantage that is particularly 
important for genomics is the ability of deep learning to 
deal with multimodal data effectively. Genomics offers 
extremely heterogeneous data including sequence, 
counts, mass spectrometry intensity and images. An 
important application of multimodal modelling will be 
the development of machine learning models for spatial 
transcriptomics153 that integrate scRNA-seq and imag-
ing data, allowing gene expression to be jointly ana-
lysed with the morphology of the cell and its position 
in the tissue. Deep learning is the ideal approach for 
incorporating spatial patterns into analyses, as has been 
shown extensively for microscopy data21,154. Last but not 
least, an important advantage is the abstraction of the 
mathematical details that is offered by deep learning 
frameworks. Researchers in genomics often do not have 
the theoretical knowledge, nor do they have the time, 
to formulate statistical models and devise appropriate 
parameter fitting algorithms. Deep learning frameworks 
abstract much of the mathematical and technical details, 
such as the need for manually deriving gradients and 

optimization procedures, which lowers the entry barrier 
to the development of new models.

In the future, we expect deep learning to find new 
applications across multiple omics data types. We also 
expect to see an increasing uptake of new techniques 
from the deep learning research community. A particu-
lar challenge in human genomics is data privacy. One 
appealing direction is the development of federated 
learning whereby machine learning model instances 
are deployed on distinct sites and trained on local data 
while sharing common parameters155. By avoiding data 
transfer, federated learning can reduce total training 
time and can facilitate the respect of genetic and medical 
data privacy. Another relevant technique for data privacy 
is generative models, which could be used to simulate 
human genomics data that can be analysed by others 
without privacy violation156. Another important area is 
the prediction of causal effects, which is highly relevant 
to medical and therapeutic applications. Substantial 
progress may occur on this front as, on the one hand, 
the field of machine learning is becoming increasingly 
interested in causal modelling and, on the other hand, 
the field of genomics is increasingly generating pertur-
bation data using massively parallel reporter assays or 
systematic CRISPR screens at the bulk and single-cell 
level. Although the impact of these novel developments 
remains to be seen, the magnitude and complexity of 
genomic data will ensure that deep learning will become 
an everyday tool for its analysis.
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