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Abstract

Single-cell RNA-seq has enabled gene expression to be studied at
an unprecedented resolution. The promise of this technology is
attracting a growing user base for single-cell analysis methods. As
more analysis tools are becoming available, it is becoming increas-
ingly difficult to navigate this landscape and produce an up-to-
date workflow to analyse one’s data. Here, we detail the steps of a
typical single-cell RNA-seq analysis, including pre-processing (qual-
ity control, normalization, data correction, feature selection, and
dimensionality reduction) and cell- and gene-level downstream
analysis. We formulate current best-practice recommendations for
these steps based on independent comparison studies. We have
integrated these best-practice recommendations into a workflow,
which we apply to a public dataset to further illustrate how these
steps work in practice. Our documented case study can be found
at https://www.github.com/theislab/single-cell-tutorial. This
review will serve as a workflow tutorial for new entrants into the
field, and help established users update their analysis pipelines.
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Introduction

In recent years, single-cell RNA sequencing (scRNA-seq) has signifi-

cantly advanced our knowledge of biological systems. We have

been able to both study the cellular heterogeneity of zebrafish, frogs

and planaria (Briggs et al, 2018; Plass et al, 2018; Wagner et al,

2018) and discover previously obscured cellular populations (Mon-

toro et al, 2018; Plasschaert et al, 2018). The great potential of this

technology has motivated computational biologists to develop a

range of analysis tools (Rostom et al, 2017). Despite considerable

effort being undertaken by the field to ensure the usability of indi-

vidual tools, a barrier of entry for novices in single-cell data analysis

is the lack of standardization due to the relative immaturity of the

field. In this paper, we present a tutorial for scRNA-seq analysis and

outline current best practices to lay a foundation for future analysis

standardization.

The challenges to standardization include the growing number of

analysis methods (385 tools as of 7 March 2019) and exploding

dataset sizes (Angerer et al, 2017; Zappia et al, 2018). We are

continuously finding new ways to use the data at our disposal. For

example, it has recently become possible to predict cell fates in dif-

ferentiation (La Manno et al, 2018). While the continuous improve-

ment of analysis tools is beneficial for generating new scientific

insight, it complicates standardization.

Further challenges for standardization lie in technical aspects.

Analysis tools for scRNA-seq data are written in a variety of

programming languages—most prominently R and Python (Zappia

et al, 2018). Although cross-environment support is growing

(preprint: Scholz et al, 2018), the choice of programming language

is often also a choice between analysis tools. Popular platforms such

as Seurat (Butler et al, 2018), Scater (McCarthy et al, 2017), or

Scanpy (Wolf et al, 2018) provide integrated environments to

develop pipelines and contain large analysis toolboxes. However,

out of necessity these platforms limit themselves to tools developed

in their respective programming languages. By extension, language

restrictions also hold true for currently available scRNA-seq analysis

tutorials, many of which revolve around the above platforms (R and

bioconductor tools: https://github.com/drisso/bioc2016singlecell

and https://hemberg-lab.github.io/scRNA.seq.course/; Lun et al,

2016b; Seurat: https://satijalab.org/seurat/get_started.html; Scanpy:

https://scanpy.readthedocs.io/en/stable/tutorials.html).

Considering the above-mentioned challenges, instead of targeting

a standardized analysis pipeline, we outline current best practices

and common tools independent of programming language. We

guide the reader through the various steps of a scRNA-seq analysis

pipeline (Fig 1), present current best practices, and discuss analysis

pitfalls and open questions. Where best practices cannot be deter-

mined due to novelty of the tools and lack of comparisons, we list

popular available tools. The outlined steps start from read or count

matrices and lead to potential analysis endpoints. Earlier pre-proces-

sing steps are covered in Lun et al (2016b). A detailed case study

that integrates the established current best practices is available on

our github at: https://github.com/theislab/single-cell-tutorial/.

Here, we have applied the current best practices in a practical exam-

ple workflow to analyse a public dataset. The analysis workflow
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Figure 1. Schematic of a typical single-cell RNA-seq analysis workflow.
Raw sequencing data are processed and aligned to give count matrices, which represent the start of the workflow. The count data undergo pre-processing and downstream
analysis. Subplots are generated using the best-practices workflow on intestinal epithelium data from Haber et al (2017).
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integrates R and Python tools in a Jupyter–Ipython notebook with

rpy2. With the available documentation, it is readily adaptable as a

workflow template.

Pre-processing and visualization

Raw data generated by sequencing machines are processed to obtain

matrices of molecular counts (count matrices) or, alternatively, read

counts (read matrices), depending on whether unique molecular

identifiers (UMIs) were incorporated in the single-cell library

construction protocol (see Box 1 for an overview of the experimen-

tal steps that precede the analysis). Raw data processing pipelines

such as Cell Ranger (Zheng et al, 2017), indrops (Klein et al, 2015),

SEQC (Azizi et al, 2018), or zUMIs (Parekh et al, 2018) take care of

read quality control (QC), assigning reads to their cellular barcodes

and mRNA molecules of origin (also called “demultiplexing”),

genome alignment, and quantification. The resulting read or count

matrices have the dimension number of barcodes x number of tran-

scripts. The term “barcode” is used here instead of “cell” as all reads

assigned to the same barcode may not correspond to reads from the

same cell. A barcode may mistakenly tag multiple cells (doublet) or

may not tag any cells (empty droplet/well).

While read and count data differ in the level of measurement

noise, the processing steps in a typical analysis pipeline are the

same. For simplicity, we will refer to the data as count matrices in

this tutorial. Where results for read and count matrices differ, read

matrices are specifically mentioned.

Quality control
Before analysing the single-cell gene expression data, we must

ensure that all cellular barcode data correspond to viable cells. Cell

QC is commonly performed based on three QC covariates: the

number of counts per barcode (count depth), the number of genes

per barcode, and the fraction of counts from mitochondrial genes

per barcode (Ilicic et al, 2016; Griffiths et al, 2018). The distribu-

tions of these QC covariates are examined for outlier peaks that are

filtered out by thresholding (Fig 2). These outlier barcodes can

correspond to dying cells, cells whose membranes are broken, or

doublets. For example, barcodes with a low count depth, few

detected genes, and a high fraction of mitochondrial counts are

indicative of cells whose cytoplasmic mRNA has leaked out through

a broken membrane, and thus, only mRNA located in the mitochon-

dria is still conserved (Fig 2). In contrast, cells with unexpectedly

high counts and a large number of detected genes may represent

doublets. Thus, high-count depth thresholds are commonly used to

filter out potential doublets. Three recent doublet detection tools

offer more elegant and potentially better solutions (DoubletDecon:

preprint: DePasquale et al, 2018; Scrublet: Wolock et al, 2019;

Doublet Finder: McGinnis et al, 2018).

Considering any of these three QC covariates in isolation can lead

to misinterpretation of cellular signals. For example, cells with a

comparatively high fraction of mitochondrial counts may be involved

in respiratory processes. Likewise, other QC covariates also have

biological interpretations. Cells with low counts and/or genes may

correspond to quiescent cell populations, and cells with high counts

may be larger in size. Indeed, molecular counts can differ strongly

between cells (see case study on project github). Thus, QC covariates

should be considered jointly when univariate thresholding decisions

are made (Fig 2D), and these thresholds should be set as permissive

as possible to avoid filtering out viable cell populations unintention-

ally. In future, filtering models that account for multivariate QC

dependencies may provide more sensitive QC options.

Datasets that contain heterogeneous mixtures of cell types may

exhibit multiple QC covariate peaks. For example, Fig 2D shows

two populations of cells with different QC distributions. If no previ-

ous filtering step was performed (note that Cell Ranger also

performs cell QC), then only the lowest count depth and gene per

barcode peak should be considered as non-viable cells. A further

thresholding guideline is the proportion of cells that are filtered out

with the chosen threshold. For high-count filtering, this proportion

should not exceed the expected doublet rate.

In addition to checking the integrity of cells, QC steps must also be

performed at the level of transcripts. Raw count matrices often

include over 20,000 genes. This number can be drastically reduced

by filtering out genes that are not expressed in more than a few cells

and are thus not informative of the cellular heterogeneity. A guideline

to setting this threshold is to use the minimum cell cluster size that is

Box 1: Key elements of an experimental scRNA-seq workflow

Generating single-cell data from a biological sample requires multiple
steps. Typical workflows incorporate single-cell dissociation, single-cell
isolation, library construction, and sequencing. We give a brief over-
view of these stages here. A more detailed explanation and compar-
ison of different protocols can be found in Ziegenhain et al (2017);
Macosko et al (2015); Svensson et al (2017).
Input material for a single-cell experiment is typically obtained in

the form of biological tissue samples. As a first step, a single-cell
suspension is generated in a process called single-cell dissociation in
which the tissue is digested.
To profile the mRNA in each cell separately, cells must be isolated.

Single-cell isolation is performed differently depending on the experi-
mental protocol. While plate-based techniques isolate cells into wells
on a plate, droplet-based methods rely on capturing each cell in its
own microfluidic droplet. In both cases, errors can occur that lead to
multiple cells being captured together (doublets or multiplets), non-
viable cells being captured, or no cell being captured at all (empty
droplets/wells). Empty droplets are especially common as droplet-
based methods rely on a low concentration flow of input cells to
control doublet rates.
Each well or droplet contains the necessary chemicals to break

down the cell membranes and perform library construction. Library
construction is the process in which the intracellular mRNA is
captured, reverse-transcribed to cDNA molecules and amplified. As
cells undergo this process in isolation, the mRNA from each cell can
be labelled with a well- or droplet-specific cellular barcode. Further-
more, many experimental protocols also label captured molecules
with a unique molecular identifier (UMI). Cellular cDNA is amplified
before sequencing to increase its probability of being measured. UMIs
allow us to distinguish between amplified copies of the same mRNA
molecule and reads from separate mRNA molecules transcribed from
the same gene.
After library construction, cellular cDNA libraries are labelled with

cellular barcodes and, depending on the protocol, UMIs. These
libraries are pooled together (multiplexed) for sequencing. Sequencing
produces read data, which undergo quality control, grouping based on
their assigned barcodes (demultiplexing) and alignment in read
processing pipelines. For UMI-based protocols, read data can be
further demultiplexed to produce counts of captured mRNA molecules
(count data).
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of interest and leaving some leeway for dropout effects. For example,

filtering out genes expressed in fewer than 20 cells may make it diffi-

cult to detect cell clusters with fewer than 20 cells. For datasets with

high dropout rates, this threshold may also complicate the detection

of larger clusters. The choice of threshold should scale with the

number of cells in the dataset and the intended downstream analysis.

Further QC can be performed on the count data directly. Ambient

gene expression refers to counts that do not originate from a

barcoded cell, but from other lysed cells whose mRNA contaminated

the cell suspension prior to library construction. These added ambi-

ent counts can distort downstream analysis such as marker gene

identification or other differential expression tests especially when

levels vary between samples. It is possible to correct for these effects

in droplet-based scRNA-seq datasets due to the large numbers of

empty droplets, which can be used to model ambient RNA expres-

sion profiles. The recently developed SoupX (preprint: Young &

Behjati, 2018) uses this approach to directly correct the count data.

Pragmatic approaches that ignore strongly ambient genes in down-

stream analysis have also been used to tackle this problem (Ange-

lidis et al, 2019).

Quality control is performed to ensure that the data quality is suf-

ficient for downstream analysis. As “sufficient data quality” cannot

be determined a priori, it is judged based on downstream analysis

performance (e.g., cluster annotation). Thus, it may be necessary to

revisit quality control decisions multiple times when analysing the

data. Often it is beneficial to start with permissive QC thresholds

and investigate the effects of these thresholds before going back to

perform more stringent QC. This approach is particularly relevant
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Figure 2. Plots of quality control metrics with filtering decisions for a mouse intestinal epithelium dataset from Haber et al (2017).

(A) Histograms of count depth per cell. The smaller histogram is zoomed-in on count depths below 4,000. A threshold is applied here at 1,500 based on the peak detected at
around 1,200 counts. (B) Histogram of the number of genes detected per cell. A small noise peak is visible at approx. 400 genes. These cells are filtered out using the depicted
threshold (red line) at 700 genes. (C) Count depth distribution from high to low count depths. This visualization is related to the log–log plot shown in Cell Ranger outputs
that is used to filter out empty droplets. It shows an “elbow”where count depths start to decrease rapidly around 1,500 counts. (D) Number of genes versus the count depth
coloured by the fraction of mitochondrial reads. Mitochondrial read fractions are only high in particularly low count cells with few detected genes. These cells are filtered out
by our count and gene number thresholds. Jointly visualizing the count and gene thresholds shows the joint filtering effect, indicating that a lower gene threshold may have
sufficed. [Correction added on 5 July 2019, after first online publication: the x-axis label in panel B was corrected from “Count depth” to “Number of genes”.]
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for datasets containing heterogeneous cell populations where cell

types or states may be misinterpreted as low-quality outlier cells. In

low-quality datasets, stringent QC thresholds may be necessary. The

quality of a dataset can be determined by experimental QC metrics

(see Appendix Supplementary Text S2). In this iterative QC opti-

mization, one should be aware of data peeking. QC thresholds

should not be adapted to improve the outcome of a statistical test.

Instead, QC can be evaluated from the distribution of QC covariates

in dataset visualizations and clustering.

Pitfalls & recommendations:

• Perform QC by finding outlier peaks in the number of genes, the count
depth and the fraction of mitochondrial reads. Consider these covari-
ates jointly instead of separately.

• Be as permissive of QC thresholding as possible, and revisit QC if
downstream clustering cannot be interpreted.

• If the distribution of QC covariates differ between samples, QC thresh-
olds should be determined separately for each sample to account for
sample quality differences as in Plasschaert et al (2018).

Normalization
Each count in a count matrix represents the successful capture,

reverse transcription and sequencing of a molecule of cellular

mRNA (Box 1). Count depths for identical cells can differ due to the

variability inherent in each of these steps. Thus, when gene expres-

sion is compared between cells based on count data, any difference

may have arisen solely due to sampling effects. Normalization

addresses this issue by e.g. scaling count data to obtain correct rela-

tive gene expression abundances between cells.

Many normalization methods exist for bulk gene expression

(preprint: Pachter, 2011; Dillies et al, 2013). While some of these

methods have been applied to scRNA-seq analysis, sources of variation

specific to single-cell data such as technical dropouts (zero counts due

to sampling) have prompted the development of scRNA-seq-specific

normalization methods (Lun et al, 2016a; Vallejos et al, 2017).

The most commonly used normalization protocol is count depth

scaling, also referred to as “counts per million” or CPM normaliza-

tion. This protocol comes from bulk expression analysis and normal-

izes count data using a so-called size factor proportional to the count

depth per cell. Variations of this method scale the size factors with

different factors of 10, or by the median count depth per cell in the

dataset. CPM normalization assumes that all cells in the dataset initi-

ally contained an equal number of mRNA molecules and count depth

differences arise only due to sampling. This assumption is shared

with the downsampling protocol, which is the process of randomly

sampling reads or counts from the data to leave all cells with a pre-

specified number of counts or fewer. While downsampling throws

away data, it also increases technical dropout rates which CPM and

other global scaling normalization methods do not. Thus, downsam-

pling can deliver a more realistic representation of what cellular

expression profiles would look like at similar count depths.

As single-cell datasets typically consist of heterogeneous cell popu-

lations with varying sizes and molecule counts, more complex

normalization methods are usually appropriate. For example, Wein-

reb et al (2018) used a simple extension of CPM that excludes genes

that account for at least 5% of the total counts in any cell, when

calculating their size factors. This approach allows for molecular

count variability in few highly expressed genes. More cellular hetero-

geneity is permitted by Scran’s pooling-based size factor estimation

method (Lun et al, 2016a). Here, size factors are estimated based on

a linear regression over genes, after cells are pooled to avoid technical

dropout effects. This method limits variability to fewer than 50% of

genes being differentially expressed between cells, and is consistently

a top-performing normalization method in independent comparisons.

Scran has been shown to perform better than other tested normaliza-

tion methods for batch correction (Buttner et al, 2019) and differen-

tial expression analysis (preprint: Vieth et al, 2019). The method was

also shown to give robust size factor estimates in a small-scale

comparison from the original authors (Vallejos et al, 2017).

CPM, high-count filtering CPM, and scran use linear, global scal-

ing to normalize count data. Non-linear normalization methods,

which can account for more complex unwanted variation, also exist

(Cole et al, 2019). Many such methods involve the parametric

modelling of count data. For example, Mayer et al (2018) fit a nega-

tive binomial model to count data, using technical covariates such

as the read depth and the number of counts per gene to fit the model

parameters. The residuals of the model fit serve as a normalized

quantification of gene expression. Such an approach can combine

technical and biological data correction (e.g. batch correction or

correction for cell cycle effects) with count depth normalization.

Non-linear normalization methods have been shown to outperform

global scaling methods especially in situations with strong batch

effects (Cole et al, 2019). Thus, non-linear normalization methods

are particularly relevant for plate-based scRNA-seq data, which tend

to have batch effects between plates. Furthermore, plate-based data

can exhibit larger variations in count depths per cell than droplet-

based data (Svensson et al, 2017). While non-linear normalization

methods, or alternative approaches such as downsampling, appear

better suited to these conditions, comparative studies are needed to

confirm this hypothesis. In this tutorial, we prefer to separate the

normalization and data correction (batch correction, noise correc-

tion, etc.) steps to emphasize different processing stages of the data

(see “Stages of pre-processed data” section). Thus, we focus on

global scaling normalization methods.

We cannot expect that a single normalization method is appro-

priate for all types of scRNA-seq data. For example, Vieth et al

(2017) showed that read and count data are best fit by different

models. Indeed Cole et al (2019) find that different normalization

methods perform optimally for different datasets and argue that

their scone tool should be used to select the appropriate normaliza-

tion method for a specific dataset. Furthermore, scRNA-seq tech-

niques can be divided into full-length and 30 enrichment methods

(Svensson et al, 2017; Ziegenhain et al, 2017). Data from full-

length protocols may benefit from normalization methods that take

into account gene length (e.g. Patel et al, 2014; Kowalczyk et al,

2015; Soneson & Robinson, 2018), while 30 enrichment data do

not. A commonly used normalization method for full-length

scRNA-seq data is TPM normalization (Li et al, 2009), which

comes from bulk RNA-seq analysis.

In the same way that cellular count data can be normalized to

make them comparable between cells, gene counts can be scaled

to improve comparisons between genes. Gene normalization

constitutes scaling gene counts to have zero mean and unit vari-

ance (z scores). This scaling has the effect that all genes are
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weighted equally for downstream analysis. There is currently no

consensus on whether or not to perform normalization over genes.

While the popular Seurat tutorials (Butler et al, 2018) generally

apply gene scaling, the authors of the Slingshot method opt against

scaling over genes in their tutorial (Street et al, 2018). The prefer-

ence between the two choices revolves around whether all genes

should be weighted equally for downstream analysis, or whether

the magnitude of expression of a gene is an informative proxy for

the importance of the gene. In order to retain as much biological

information as possible from the data, we opt to refrain from scal-

ing over genes in this tutorial.

After normalization, data matrices are typically log(x+1)-trans-

formed. This transformation has three important effects. Firstly,

distances between log-transformed expression values represent log

fold changes, which are the canonical way to measure changes in

expression. Secondly, log transformation mitigates (but does not

remove) the mean–variance relationship in single-cell data (Bren-

necke et al, 2013). Finally, log transformation reduces the skew-

ness of the data to approximate the assumption of many

downstream analysis tools that the data are normally distributed.

While scRNA-seq data are not in fact log-normally distributed

(Vieth et al, 2017), these three effects make the log transformation

a crude, but useful tool. This usefulness is highlighted by down-

stream applications for differential expression testing (Finak et al,

2015; Ritchie et al, 2015) or batch correction (Johnson et al, 2006;

Buttner et al, 2019) that use log transformation for these purposes.

It should however be noted that log transformation of normalized

data can introduce spurious differential expression effects into the

data (preprint: Lun, 2018). This effect is particularly pronounced

when normalization size factor distributions differ strongly

between tested groups.

Pitfalls & recommendations:

• We recommend scran for normalization of non-full-length datasets.
An alternative is to evaluate normalization approaches via scone espe-
cially for plate-based datasets. Full-length scRNA-seq protocols can
be corrected for gene length using bulk methods.

• There is no consensus on scaling genes to 0 mean and unit variance.
We prefer not to scale gene expression.

• Normalized data should be log(x+1)-transformed for use with down-
stream analysis methods that assume data are normally distributed.

Data correction and integration
Normalization as described above attempts to remove the effects

of count sampling. However, normalized data may still contain

unwanted variability. Data correction targets further technical

and biological covariates such as batch, dropout, or cell cycle

effects. These covariates are not always corrected for. Instead,

the decision of which covariates to consider will depend on the

intended downstream analysis. We propose to consider correction

for biological and technical covariates separately as these are

used for different purposes and present unique challenges.

Regressing out biological effects

While correcting for technical covariates may be crucial to uncover-

ing the underlying biological signal, correction for biological

covariates serves to single out particular biological signals of inter-

est. The most common biological data correction is to remove the

effects of the cell cycle on the transcriptome. This data correction

can be performed by a simple linear regression against a cell cycle

score as implemented in the Scanpy and Seurat platforms (Butler

et al, 2018; Wolf et al, 2018) or in specialized packages with more

complex mixture models such as scLVM (Buettner et al, 2015) or f-

scLVM (Buettner et al, 2017). Lists of marker genes to compute cell

cycle scores are obtained from the literature (Macosko et al, 2015).

These methods can also be used to regress out other known biologi-

cal effects such as mitochondrial gene expression, which is inter-

preted as an indication of cell stress.

Several aspects should be considered prior to correcting data

for biological effects. Firstly, correcting for biological covariates is

not always helpful to interpret scRNA-seq data. While removing

cell cycle effects can improve the inference of developmental

trajectories (Buettner et al, 2015; Vento-Tormo et al, 2018), cell

cycle signals can also be informative of the biology. For example,

proliferating cell populations can be identified based on cell cycle

scores (see case study on project github). Also, biological signals

must be understood in context. Given that biological processes

occur within the same organism, there exist dependencies between

these processes. Thus, correcting for one process may unintention-

ally mask the signal of another. Finally, it has been argued that

variation in cell size accounts for the transcriptomic effect gener-

ally attributed to the cell cycle (McDavid et al, 2016). Thus,

correcting for cell size via normalization, or dedicated tools such

as cgCorrect (Blasi et al, 2017), also partially corrects for cell cycle

effects in scRNA-seq data.

Regressing out technical effects

The variants of regression models used to regress out biological

covariates can also be applied to technical covariates. The most

prominent technical covariates in single-cell data are count depth

and batch. Although normalization scales count data to render gene

counts comparable between cells, a count depth effect often remains

in the data. This count depth effect can be both a biological and a

technical artefact. For example, cells may differ in size and therefore

in mRNA molecule counts. Yet, technical count effects may remain

after normalization as no scaling method can infer the expression

values of genes that were not detected due to poor sampling.

Regressing out count depth effects can improve the performance of

trajectory inference algorithms, which rely on finding transitions

between cells (see case study on project github). When correcting

for multiple covariates (e.g. cell cycle and count depth), the regres-

sion should be performed over all covariates in a single step to

account for dependence between covariates.

An alternative to regression-based strategies for removing count

effects is to use a more rigorous normalization procedure such as

downsampling or non-linear normalization methods (see “Normal-

ization” section). These approaches may be particularly relevant for

plate-based scRNA-seq datasets where the larger variation of count

depths per cell can mask the heterogeneity between cells.

Batch effects and data integration

Batch effects can occur when cells are handled in distinct

groups. These groups can consist of cells on different chips, cells

in different sequencing lanes or cells harvested at different time
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points. The differing environments experienced by the cells can

have an effect on the measurement of the transcriptome or on

the transcriptome itself. The resulting effects exist on multiple

levels: between groups of cells in an experiment, between exper-

iments performed in the same laboratory or between datasets

from different laboratories. Here, we distinguish between the first

and the last two scenarios. Correcting for batch effects between

samples or cells in the same experiment is the classical scenario

known as batch correction from bulk RNA-seq. We distinguish

this from the integration of data from multiple experiments,

which we call data integration. While batch effects are typically

corrected using linear methods, non-linear approaches are used

for data integration.

A recent comparison of classical batch correction methods has

revealed that ComBat (Johnson et al, 2006) performs well also for

single-cell experiments of low-to-medium complexity (Buttner et al,

2019). ComBat consists of a linear model of gene expression where

the batch contribution is taken into account both in the mean and

the variance of the data (Fig 3). Irrespective of computational meth-

ods, the best method of batch correction is pre-empting the effect

and avoiding it altogether by clever experimental design (Hicks et al,

2017). Batch effects can be avoided by pooling cells across experi-

mental conditions and samples. Using strategies such as cell tagging

(preprint: Gehring et al, 2018), or via genetic variation (Kang et al,

2018), it is possible to demultiplex cells that were pooled in the

experiment.

In comparison with batch correction, the additional challenge

that data integration methods face revolves around compositional

differences between datasets. When estimating batch effects,

ComBat uses all cells in a batch to fit batch parameters. This

approach will confound the batch effect with biological differences

between cell types or states that are not shared among datasets.

Data integration methods such as Canonical Correlation Analysis

(CCA; Butler et al, 2018), Mutual Nearest Neighbours (MNN;

Haghverdi et al, 2018), Scanorama (preprint: Hie et al, 2018), RISC

(preprint: Liu et al, 2018), scGen (preprint: Lotfollahi et al, 2018),

LIGER (preprint: Welch et al, 2018), BBKNN (preprint: Park et al,

2018), and Harmony (preprint: Korsunsky et al, 2018) have been

developed to overcome this issue. While data integration methods

can also be applied to simple batch correction problems, we

recommend to be wary of over-correction given the increased

degrees of freedom of non-linear data integration approaches. For

example, MNN was shown to be outperformed by ComBat in the

simpler batch correction setting (Buttner et al, 2019). Further

comparison studies between data integration and batch correction

methods are needed to assess how generally these methods can be

applied.

Expression recovery

A further type of technical data correction is expression recovery

(also denoising or imputation). Measurements of single-cell tran-

scriptomes contain various sources of noise (Grün et al, 2014;

Kharchenko et al, 2014; Hicks et al, 2017). A particularly promi-

nent aspect of this noise is dropout. Inferring dropout events,

replacing these zeros with appropriate expression values, and

reducing the noise in the dataset have been the target of several

No batch correction Batch correction

Figure 3. UMAP visualization before and after batch correction.

Cells are coloured by sample of origin. Separation of batches is clearly visible before batch correction and less visible afterwards. Batch correction was performed using
ComBat on mouse intestinal epithelium data from Haber et al (2017).
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recent tools (MAGIC: van Dijk et al, 2018; DCA: Eraslan et al,

2019; scVI: Lopez et al, 2018; SAVER: Huang et al, 2018; scIm-

pute: Li & Li, 2018). Performing expression recovery has been

shown to improve the estimation of gene–gene correlations (van

Dijk et al, 2018; Eraslan et al, 2019). Furthermore, this step can be

integrated with normalization, batch correction and other down-

stream analysis as implemented in the scVI tool (Lopez et al, 2018).

While most data correction methods take normalized data as input,

some expression recovery methods are based on expected negative

binomial noise distributions and therefore run on raw count data.

When applying expression recovery, one should take into considera-

tion that no method is perfect. Thus, any method may over- or

under-correct noise in the data. Indeed, false correlation signals have

been reported as a result of expression recovery (Andrews &

Hemberg, 2018). Given the difficulty of assessing successful expres-

sion recovery in a practical application, this scenario represents a

challenge to the user pondering whether or not to denoise their data.

Furthermore, scalability to large datasets is still an issue for

currently available expression recovery methods. There is currently

no consensus on how denoised data should be used in the light of

these considerations (see “Stages of processed data” section). A

prudent approach would be to use expression recovery only for

visual display of data rather than to generate hypotheses during

exploratory data analysis. Thorough experimental validation is

particularly important here.

Pitfalls & recommendations:

• Regress out biological covariates only for trajectory inference and if
other biological processes of interest are not masked by the regressed
out biological covariate.

• Regress out technical and biological covariates jointly rather than
serially.

• Plate-based dataset pre-processing may require regressing out counts,
normalization via non-linear normalization methods or downsam-
pling.

• We recommend performing batch correction via ComBat when cell
type and state compositions between batches are consistent

• Data integration and batch correction should be performed by dif-
ferent methods. Data integration tools may over-correct simple batch
effects.

• Users should be cautious of signals found only after expression recov-
ery. Exploratory analysis may be best performed without this step.

Feature selection, dimensionality reduction and visualization
A human single-cell RNA-seq dataset can contain expression values

for up to 25,000 genes. Many of these genes will not be informative

for a given scRNA-seq dataset, and many genes will mostly contain

zero counts. Even after filtering out these zero count genes in the QC

step, the feature space for a single-cell dataset can have over 15,000

dimensions. To ease the computational burden on downstream anal-

ysis tools, reduce the noise in the data, and to visualize the data, one

can use several approaches to reduce the dimensionality of the

dataset.

Feature selection

The first step of reducing the dimensionality of scRNA-seq datasets

commonly is feature selection. In this step, the dataset is filtered

to keep only genes that are “informative” of the variability in the

data. Thus, highly variable genes (HVGs) are often used (Bren-

necke et al, 2013). Depending on the task and the complexity of

the dataset, typically between 1,000 and 5,000 HVGs are selected

for downstream analysis (see Fig EV1 and Dataset EV1). Prelimi-

nary results from Klein et al (2015) suggest that downstream anal-

ysis is robust to the exact choice of the number of HVGs. While

varying the number of HVGs between 200 and 2,400, the authors

reported similar low-dimensional representations in the PCA space.

Based on this result, we prefer to err on the side of higher

numbers of HVGs.

A simple, yet popular, method of selecting HVGs is implemented

in both Scanpy and Seurat. Here, genes are binned by their mean

expression, and the genes with the highest variance-to-mean ratio

are selected as HVGs in each bin. There exist different flavours of

this algorithm that expect either count data (Seurat) or log-trans-

formed data (Cell Ranger). Optimally, HVGs should be selected after

technical data correction to avoid selecting genes that are highly

variable only due to, e.g., batch effects. Other methods for HVG

selection are reviewed in Yip et al (2018).

Dimensionality reduction

After feature selection, the dimensions of single-cell expression

matrices can be further reduced by dedicated dimensionality reduc-

tion algorithms. These algorithms embed the expression matrix into

a low-dimensional space, which is designed to capture the underly-

ing structure in the data in as few dimensions as possible. This

approach works as single-cell RNA-seq data are inherently low-

dimensional (Heimberg et al, 2016). In other words, the biological

manifold on which cellular expression profiles lie can be sufficiently

described by far fewer dimensions than the number of genes.

Dimensionality reduction aims to find these dimensions.

There are two main objectives of dimensionality reduction meth-

ods: visualization and summarization. Visualization is the attempt

to optimally describe the dataset in two or three dimensions. These

reduced dimensions are used as coordinates on a scatter plot to

obtain a visual representation of the data. Summarization does not

prescribe the number of output components. Instead, higher compo-

nents become less important for describing the variability present in

the data. Summarization techniques can be used to reduce the data

to its essential components by finding the inherent dimensionality

of the data, and are thus helpful for downstream analysis. While a

2-dimensional visualization output should not be used to summa-

rize a dataset, a summarization method can be used to visualize the

data using the leading reduced components. However, a dedicated

visualization technique will typically provide a better representation

of the variability.

Reduced dimensions are generated through linear or non-linear

combinations of feature space dimensions (gene expression vectors).

Especially in the non-linear case, the interpretability of the reduced

dimensions is sacrificed in this process. An example application of

some commonly used dimensionality reduction methods is shown in

Fig 4. With a growing list of methods to choose from, it is out of the

scope of this tutorial to review these methods in detail. Rather, we

briefly outline the practical considerations that may aid users in

choosing between common dimensionality reduction methods. A

more detailed review of dimensionality reduction for single-cell anal-

ysis can be found in Moon et al (2018).
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Two popular dimensionality reduction techniques that are princi-

pally summarization methods are principal component analysis

(PCA; Pearson, 1901) and diffusion maps (Coifman et al, 2005)

which were popularized for single-cell analysis by Haghverdi et al

(2015). Principal component analysis is a linear approach that

generates reduced dimensions by maximizing the captured residual

variance in each further dimension. While PCA does not capture the

structure of the data in few dimensions as well as non-linear meth-

ods, it is the basis of many currently available analysis tools for

clustering or trajectory inference. Indeed, PCA is commonly used as

a pre-processing step for non-linear dimensionality reduction meth-

ods. Typically, PCA summarizes a dataset via its top N principal

components, where N can be determined by “elbow” heuristics (see

Fig 4F) or the permutation-test-based jackstraw method (Chung &

Storey, 2015; Macosko et al, 2015). The simple linearity of PCA has

the advantage that distances in reduced dimensional space have a

consistent interpretation in all regions of this space. Thus, we can

correlate quantities of interest with principal components to assess

their importance. For example, principal components can be

projected onto technical nuisance covariates to investigate the

performance of QC, data correction and normalization steps (But-

tner et al, 2019), or show the importance of genes in the dataset

(Chung & Storey, 2015). Diffusion maps are a non-linear data

summarization technique. As diffusion components emphasize tran-

sitions in the data, they are principally used when continuous

processes such as differentiation are of interest. Typically, each dif-

fusion component (i.e. diffusion map dimension) highlights the

heterogeneity of a different cell population.

Visualization

For visualization purposes, it is standard practice to use non-linear

dimensionality reduction methods (Fig 4). The most common

dimensionality reduction method for scRNA-seq visualization is the

t-distributed stochastic neighbour embedding (t-SNE; van der

Maaten & Hinton, 2008). t-SNE dimensions focus on capturing local

similarity at the expense of global structure. Thus, these visualiza-

tions may exaggerate differences between cell populations and over-

look potential connections between these populations. A further

difficulty is the choice of its perplexity parameter, as t-SNE graphs

may show strongly different numbers of clusters depending on its

value (Wattenberg et al, 2016). Common alternatives to t-SNE are

the Uniform Approximation and Projection method (UMAP;

preprint: McInnes & Healy, 2018) or graph-based tools such as

SPRING (Weinreb et al, 2018). UMAP and SPRING’s force-directed

layout algorithm ForceAtlas2 arguably represent the best approxi-

mation of the underlying topology (Wolf et al, 2019, Supplemental
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Figure 4. Common visualization methods for scRNA-seq data.

Mouse intestinal epithelium regions data from Haber et al (2017) visualized on the first two components for: (A) PCA, (B) t-SNE, (C) diffusion maps, (D) UMAP and (E) A force-
directed graph layout via ForceAtlas2. Cells are coloured by count depth. (F) Variance explained by the first 31 principal components (PCs). The “elbow” of this plot, which is
used to select relevant PCs to analyse the dataset, lies between PCs 5 and 7.
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Note 4). What sets UMAP apart in this comparison is its speed and

ability to scale to large numbers of cells (Becht et al, 2018). Thus, in

the absence of particular biological questions, we regard UMAP as

best practice for exploratory data visualization. Moreover, UMAP

can also summarize data in more than two dimensions. While we

are not aware of any applications of UMAP for data summarization,

it may prove a suitable alternative to PCA.

An alternative to classical visualization on the cell level is

partition-based graph abstraction (PAGA; Wolf et al, 2019). This

tool has been shown to adequately approximate the topology of

the data while coarse-graining the visualization using clusters. In

combination with any of the above visualization methods, PAGA

produces coarse-grained visualizations, which can simplify the

interpretation of single-cell data especially with large numbers of

cells.

Pitfalls & recommendations:

• We recommend selecting between 1,000 and 5,000 highly variable
genes depending on dataset complexity.

• Feature selection methods that use gene expression means and vari-
ances cannot be used when gene expression values have been
normalized to zero mean and unit variance, or when residuals from
model fitting are used as normalized expression values. Thus, one
must consider what pre-processing to perform before selecting HVGs.

• Dimensionality reduction methods should be considered separately
for summarization and visualization.

• We recommend UMAP for exploratory visualization; PCA for general
purpose summarization; and diffusion maps as an alternative to PCA
for trajectory inference summarization.

• PAGA with UMAP is a suitable alternative to visualize particularly
complex datasets.

Stages of pre-processed data
While we have outlined common pre-processing steps in scRNA-

seq as a sequential pipeline above, downstream analyses often

prefer to take different levels of pre-processed data, and it is

recommended to adapt pre-processing depending on the down-

stream application. To clarify this situation to a new user, we

delineated pre-processing into five stages of data processing: (i)

raw data, (ii) normalized data, (iii) corrected data, (iv) feature-

selected data, and (v) dimensionality-reduced data. These stages

of data processing are grouped into three pre-processing layers:

measured data, corrected data, and reduced data. Cell and gene

QC should always be performed and is therefore omitted from this

characterization. While the order of the layers represent the typi-

cal workflow in scRNA-seq analysis, it is also possible to skip

layers or have slight alterations in the order of processing stages.

For example, data correction may not be necessary for single

batch datasets. In Table 1, we summarize the appropriate down-

stream applications for each layer of pre-processed data.

The stages of pre-processing in Table 1 are divided into three

groups: measured data, corrected data and reduced data. We define

measured data as raw data and processed data that retain the struc-

ture of zeros. By scaling count data with a cell-specific factor, global

scaling normalization methods retain zero expression values even

after log(x+1)-transformation. In contrast, correcting data for

unwanted variability replaces zero expression values. The corrected

data layer represents the “cleanest” version of the data, which is the

closest approximation of the underlying biological signal. We call

the final pre-processing layer reduced data. This data layer empha-

sizes dominant aspects of the data, which can be described using a

reduced set of features.

The aforementioned characteristics determine the suitability of

the pre-processed data for particular downstream applications. As

the final pre-processing stage, reduced data would be the natural

candidate for a broadly applicable data layer. However, testing for

differential expression is only biologically interpretable in gene

space, which is not (fully) represented in reduced data. The

strength of reduced data lies in the summarization of the biology

and the reduction of noise, which can mask biological signals.

Thus, reduced data are used for exploratory methods that require

data summaries (visualization, neighbourhood graph inference,

clustering) and for computationally complex downstream analysis

tools (trajectory inference). Indeed, many trajectory inference

methods incorporate dimensionality reduction in the tools them-

selves.

The expression profiles of individual genes can only be

compared in gene space, which is captured in measured and

corrected data. Comparison of expression profiles can be

performed visually and statistically. We argue that visual and

statistical comparison should be performed on different data

layers. For visual inspection of gene expression, corrected data

are most appropriate. Should raw data be presented for visual

comparison, the user is required to inherently understand the

biases in the data in order to interpret the results. Corrected data

facilitate this interpretation. However, one should consider

corrected data for technical and biological covariates separately

here. While correction for biological covariates may increase the

strength of a particular biological signal, it produces a less

Table 1. Stages of data processing and appropriate downstream applications.

Pre-processing layer Stage of data processing Appropriate applications

Measured 1) Raw Statistical testing (Differential expression: marker genes, genes over condition,
genes over time)

2) Normalized (+ log transformed)

Corrected 3.1) Corrected (technical correction) Visual comparison of data (plotting)

3.2) Corrected (biological correction) Pre-processing for trajectory inference

Reduced 4) Feature selected Visualization, trajectory inference

5) Dimensionality reduced (summarized) Visualization, clustering, KNN graph inference, trajectory inference
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accurate representation of the underlying biology and will mask

other signals that may be relevant. Thus, biologically corrected

data are appropriate mainly for analysis tools that focus on

particular biological processes such as trajectory inference meth-

ods.

Statistical comparison of gene expression is most appropriate on

the measured data layer. No perfect data correction method exists

for denoising, batch correction or correcting for other sources of

variation. Thus, data correction methods inevitably over- or under-

correct the data and therefore alter the variance of at least some

gene expression profiles in an unintended way. Statistical tests of

gene expression rely on assessing the background variance as a null

model for noise in the data. As data correction tends to reduce back-

ground variation (Fig EV2), genes whose background variation is

over-corrected by data correction methods will be more likely

assessed as significantly differentially expressed. Furthermore,

certain data correction methods (e.g. ComBat) interpret expression

signals that do not conform to the experimental design as noise,

which is subsequently removed from the data. In addition to an

underestimation of the noise, this optimization of the experimental

design signal can lead to an overestimation of the effect size. In the

light of these considerations, using measured data as input, as

opposed to corrected data, constitutes a more conservative approach

to differential testing. With measured data, technical covariates can

and should be taken into consideration in the differential testing

model.

The above view is supported by a recent comparison of

scRNA-seq differential expression methods, which uses only raw

and normalized data as input (Soneson & Robinson, 2018). The

normalized data used in this study revolve only around global

scaling methods. However, many currently available non-linear

normalization methods blur the line between normalization and

data correction (see “Normalization” section). Such normalized

data may no longer be appropriate as input for differential

testing.

Pitfalls & recommendations:

• Use measured data for statistical testing, corrected data for visual
comparison of data and reduced data for other downstream analysis
based on finding the underlying biological data manifold.

Downstream analysis

After pre-processing, methods that we call downstream analysis

are used to extract biological insights and describe the underly-

ing biological system. These descriptions are obtained by fitting

interpretable models to the data. Examples of such models are

groups of cells with similar gene expression profiles represent-

ing cell-type clusters; small changes in gene expression between

similar cells denoting continuous (differentiation) trajectories; or

genes with correlated expression profiles indicating co-regula-

tion.

Downstream analysis can be divided into cell- and gene-level

approaches as shown in Fig 5. Cell-level analysis typically focuses

on the description of two structures: clusters and trajectories.

These structures can in turn be analysed on the cell and the gene

level leading to cluster analysis and trajectory analysis methods.

Broadly, cluster analysis methods attempt to explain the hetero-

geneity in the data based on a categorization of cells into groups.

In contrast, in trajectory analysis the data are regarded as a snap-

shot of a dynamic process. Trajectory analysis methods investi-

gate this underlying process.

Here, we describe cell- and gene-level cluster and trajectory anal-

ysis tools before detailing gene-level analyses that are performed

independently of these cellular structures.

Cluster analysis
Clustering

Organizing cells into clusters is typically the first intermediate

result of any single-cell analysis. Clusters allow us to infer the

identity of member cells. Clusters are obtained by grouping

cells based on the similarity of their gene expression profiles.

Expression profile similarity is determined via distance metrics,

which often take dimensionality-reduced representations as

input. A common example of similarity scoring is Euclidean

distances that are calculated on the PC-reduced expression

space. Two approaches exist to generate cell clusters from these

similarity scores: clustering algorithms and community detection

methods.

Clustering is a classical unsupervised machine learning prob-

lem, based directly on a distance matrix. Cells are assigned to clus-

ters by minimizing intracluster distances or finding dense regions

in the reduced expression space. The popular k-means clustering

algorithm divides cells into k clusters by determining cluster

centroids and assigning cells to the nearest cluster centroid.

Centroid positions are iteratively optimized (MacQueen, 1967).

This approach requires an input of the number of clusters

expected, which is usually unknown and must be calibrated

heuristically. Applications of k-means to single-cell data vary in

the distance metrics used. Alternatives to standard Euclidean

distances include cosine similarity (Haghverdi et al, 2018), correla-

tion-based distance metrics (Kim et al, 2018) or the SIMLR

method, which learns a distance metric for each dataset using

Gaussian kernels (Wang et al, 2017). A recent comparison has

suggested that correlation-based distances may outperform other

distance metrics when used with k-means or as the basis for Gaus-

sian kernels (Kim et al, 2018).

Community detection methods are graph-partitioning algorithms

and thus rely on a graph representation of single-cell data. This

graph representation is obtained using a K-Nearest Neighbour

approach (KNN graph). Cells are represented as nodes in the

graph. Each cell is connected to its K most similar cells, which are

typically obtained using Euclidean distances on the PC-reduced

expression space. Depending on the size of the dataset, K is

commonly set to be between 5 and 100 nearest neighbours. The

resulting graph captures the underlying topology of the expression

data (Wolf et al, 2019). Densely sampled regions of expression

space are represented as densely connected regions of the graph.

These dense regions are detected using community detection meth-

ods. Community detection is often faster than clustering as only

neighbouring cell pairs have to be considered as belonging to the

same cluster. This approach thus greatly reduces the search space

for possible clusters.

After the pioneering PhenoGraph method (Levine et al, 2015),

the standard approach to clustering single-cell datasets has become
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multi-resolution modularity optimization (Newman & Girvan,

2004; Reichardt & Bornholdt, 2006) as implemented in the Louvain

algorithm (Blondel et al, 2008) on single-cell KNN graphs. This

method is the default clustering method implemented in the

Scanpy and Seurat single-cell analysis platforms. It has been

shown to outperform other clustering methods for single-cell RNA-

seq data (Duò et al, 2018; Freytag et al, 2018), and flow and mass

cytometry data (Weber & Robinson, 2016). Conceptually, the

Louvain algorithm detects communities as groups of cells that

have more links between them than expected from the number of

links the cells have in total. The optimized modularity function

includes a resolution parameter, which allows the user to deter-

mine the scale of the cluster partition. By subsetting the KNN

graph, it is also possible to subcluster only particular clusters.

Such subclustering can allow the user to identify cell states within

cell-type clusters (Wagner et al, 2016), but may also lead to

patterns that arise only from noise in the data.

Pitfalls & recommendations:

• We recommend clustering by Louvain community detection on a
single-cell KNN graph.

• Clustering does not have to be performed at a single resolution.
Subclustering particular cell clusters is a valid approach to focus on
more detailed substructures in a dataset.

Cluster annotation

On a gene level, clustered data are analysed by finding the gene

signatures of each cluster. These so-called marker genes characterize

the cluster and are used to annotate it with a meaningful biological

label. This label represents the identity of cells within the cluster. As

any clustering algorithm will produce a partition of the data, the

validity of the identified clusters can only be determined by success-

ful annotation of the represented biology.
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Figure 5. Overview of downstream analysis methods.
Methods are divided into cell- and gene-level analysis. Cell-level analysis approaches are again subdivided into cluster and trajectory analysis branches, which include also
gene-level analysis methods. All methods with a blue background are gene-level approaches.
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While it may be tempting to assume that the clusters detected in

single-cell data represent cell types, there are several axes of variation

that determine cellular identity (Wagner et al, 2016; Clevers et al,

2017). Firstly, it is not always clear what constitutes a cell type. For

example, while “T cells” may be a satisfactory label of a cell type to

some, others may look for T-cell subtypes within a dataset and distin-

guish between CD4+ and CD8+ T cells (Wagner et al, 2016; Clevers

et al, 2017). Furthermore, cells of the same cell type in different states

may be detected in separate clusters. For the above reasons, it is best

to use the term “cell identities” rather than “cell types”. Before clus-

tering and annotating clusters, the user must decide which level of

annotation detail, and thus which cluster resolution, is of interest.

Identifying and annotating clusters relies on using external

sources of information describing the expected expression profiles

of individual cell identities. Thanks to recent and ongoing efforts

such as the mouse brain atlas (Zeisel et al, 2018) or the Human Cell
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Figure 6. Cluster analysis results of mouse intestinal epithelium dataset from Haber et al (2017).

(A) Annotated cell-identity clusters found by Louvain clustering visualized in a UMAP representation. (B) Cell-identity marker expression to identify stem cells (Slc12a2),
enterocytes (Arg2), goblet cells (Tff3) and Paneth cells (Defa24). Corrected expression levels are visualized from low expression (grey) to high expression (red). Marker genes
may be expressed also in other cell-identity populations as shown for goblet and Paneth cells. (C) Cell-identity composition heat maps of proximal (upper) and distal (lower)
intestinal epithelium regions. High relative cell density is shown as dark red.
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Atlas (Regev et al, 2017), reference databases are increasingly

becoming available. These databases greatly facilitate cell identity

annotation. In the absence of a relevant reference database, cell

identities can be annotated by comparing data-derived marker genes

with marker genes from the literature (see case study on project

github) or by directly visualizing the expression values of literature-

derived marker genes (Fig 6B). It should be noted that the latter

method constrains the user to the classical understanding of cell

types derived from bulk expression studies, rather than cell identi-

ties. Furthermore, it has been shown that commonly used cell

surface markers are limited in their ability to define cell identities

(Tabula Muris Consortium et al, 2018).

There are two ways to use reference database information to

annotate clusters: using data-derived marker genes or using full

gene expression profiles. Marker gene sets can be found by applying

differential expression (DE) testing between two groups: the cells in

one cluster and all other cells in the dataset (see “Differential

expression testing”). Typically, we focus on genes that are up-regu-

lated in the cluster of interest. As marker genes are expected to have

strong differential expression effects, simple statistical tests such as

the Wilcoxon rank-sum test or the t-test are often used to rank genes

by their difference in expression between these two groups. The

top-ranked genes from the respective test statistic are regarded as

marker genes. Clusters can be annotated by comparing marker

genes from the dataset and marker genes from reference dataset via

enrichment tests, the Jaccard index or other overlap statistics. Refer-

ence webtools such as www.mousebrain.org (Zeisel et al, 2018) or

http://dropviz.org/ (Saunders et al, 2018) allow users to visualize

the expression of dataset marker genes in the reference dataset to

facilitate cell-identity annotation.

Two aspects should be noted when detecting marker genes.

Firstly, the P-values obtained for marker genes are based on the

assumption that the obtained cell clusters represent the biological

ground truth. If one considers that there is uncertainty in the

cluster assignment, the relationship between cluster assignment

and marker gene detection must be accounted for in the statisti-

cal test. This relationship arises as both clusters and marker

genes are typically determined based on the same gene expres-

sion data. The null hypothesis implicit in DE tests is that genes

have the same distribution of expression values between the two

groups. Yet, as the two groups are defined by the output of a

clustering method in marker gene detection, there are differences

in their gene expression profiles by design. We thus find signifi-

cant marker genes even when clustering random data generated

by splatter (Zappia et al, 2017) (see Appendix Supplementary

Text S3). To obtain an appropriate measure of significance in

clustered data, one can use a permutation test to account for

the clustering step. This test is elaborated on in Appendix

Supplementary Text S3. A recent differential expression tool also

specifically addresses this issue (preprint: Zhang et al, 2018).

With the current set-up, the P-values are often inflated, which

can lead to an overestimation of the number of marker genes.

However, the ranking of genes based on P-values is unaffected.

Assuming the clustering is biologically meaningful, the top-

ranked marker genes will still be the best marker gene candi-

dates. In the first instance, we can loosely verify marker genes

via visual inspection. We emphasize that inflated P-values occur

specifically when defining cell-identity clusters via an

unsupervised clustering approach. When instead determining

cell-identity clusters via the expression of individual genes, the

P-values can be interpreted as expected for all other genes. This

univariate approach to cluster annotation, although common, is

however not recommended outside specific cases (e.g. insulin in

beta cells or haemoglobin in erythrocytes). Secondly, marker

genes differentiate a cluster from others in the dataset and are

thus dependent not only on the cell cluster, but also on the

dataset composition. If the dataset composition does not accu-

rately represent background gene expression, detected marker

genes will be biased towards what is missing. This aspect must

be considered especially when computing marker genes for data-

sets with low cellular diversity.

Recently, automated cluster annotation has become available.

By directly comparing the gene expression profiles of annotated

reference clusters to individual cells, tools such as scmap (Kiselev

et al, 2018b) or Garnett (preprint: Pliner et al, 2019) can transfer

annotations between the reference and the dataset. Thus, these

methods can perform annotation and cluster assignment simultane-

ously, without the need for a data-driven clustering step. As cell

type and state compositions differ between experimental conditions

(Segerstolpe et al, 2016; Tanay & Regev, 2017), clustering based on

reference data should not replace the data-driven approach.

The iteration of clustering, cluster annotation, re- or subcluster-

ing and re-annotation can be time-consuming. Automated cluster

annotation methods offer a vast speedup of this process. However,

there are benefits and limitations to automated and manual

approaches that make it difficult to recommend one over the other.

Increases in speed go together with compromises in flexibility. As

mentioned above, reference atlases will not contain exactly the

same cell identities as the dataset under investigation. Thus, one

should not forgo marker gene calculation for manual annotation.

Especially for large datasets that contain many clusters, the current

best practice is a combination of both approaches. In the interest of

speed, automated cell-identity annotation can be used to coarsely

label cells and identify where subclustering may be needed. Subse-

quently, marker genes should be calculated for the dataset clusters

and compared to known marker gene sets from the reference dataset

or literature. For smaller datasets and datasets that lack reference

atlases, manual annotation will suffice.

Pitfalls & recommendations:

• Do not use marker gene P-values to validate a cell-identity cluster,
especially when the detected marker genes do not help to annotate
the community. P-values may be inflated.

• Note that marker genes for the same cell-identity cluster may differ
between datasets purely due to dataset cell type and state compositions.

• If relevant reference atlases exist, we recommend using automated
cluster annotation combined with data-derived marker-gene-based
manual annotation to annotate clusters.

Compositional analysis

At the cell level, we can analyse clustered data in terms of its compo-

sitional structure. Compositional data analysis revolves around the

proportions of cells that fall into each cell-identity cluster. These

proportions can change in response to disease. For example,

14 of 23 Molecular Systems Biology 15: e8746 | 2019 ª 2019 The Authors

Molecular Systems Biology Malte D Luecken & Fabian J Theis

http://www.mousebrain.org
http://dropviz.org/


salmonella infection has been shown to increase the proportion of

enterocytes in the mouse intestinal epithelium (Haber et al, 2017).

Investigating compositional changes in single-cell data requires

sufficient cell numbers to robustly assess cell-identity cluster

proportions, and sufficient sample numbers to evaluate expected

background variation in cell-identity cluster compositions. As appro-

priate datasets have only recently become available, dedicated tools

are yet to be developed. In the mouse study mentioned above, cell-

identity counts were modelled using a Poisson process, including

the condition as a covariate, and the total number of cells detected

as an offset. Here, a statistical test can be performed over the regres-

sion coefficient to assess whether a particular cell identity has signif-

icantly changed in frequency. However, tests over other cell

identities in the same dataset are not independent of each other. If

the proportion of one cell-identity cluster changes, the proportions

of all others must have changed as well. Thus, one cannot assess

whether the overall composition has significantly changed using this

model. In the absence of dedicated tools, visual comparison of

compositional data can be informative of changes in compositions

between samples (Fig 6C). Future developments in this field will

likely borrow from the mass cytometry (e.g. Tibshirani et al, 2002;

Arvaniti & Claassen, 2017; Lun et al, 2017; Weber et al, 2018) or

the microbiome literature (Gloor et al, 2017), where compositional

data analysis has received more attention.

Pitfalls & recommendations:

• Consider that statistical tests over changes in the proportion of a cell-
identity cluster between samples are dependent on one another.

Trajectory analysis
Trajectory inference

Cellular diversity cannot sufficiently be described by a discrete clas-

sification system such as clustering. The biological processes that

drive the development of the observed heterogeneity are continuous

processes (Tanay & Regev, 2017). Thus, in order to capture transi-

tions between cell identities, branching differentiation processes, or

gradual, unsynchronized changes in biological function, we require

dynamic models of gene expression. This class of methods is known

as trajectory inference (TI).

Trajectory inference methods interpret single-cell data as a snapshot

of a continuous process. This process is reconstructed by finding paths

through cellular space that minimize transcriptional changes between

neighbouring cells (Fig 7A and B). The ordering of cells along these
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Figure 7. Trajectory analysis and graph abstraction of mouse intestinal epithelium data from Haber et al (2017).

(A) Distal and proximal enterocyte differentiation trajectories inferred by Slingshot. The Distal lineage is shown coloured by pseudotime from red to blue. Other cells in the
dataset are grey. (B) Slingshot trajectories over clusters in PCA space. Clusters are abbreviated as follows: EP—enterocyte progenitors; Imm. Ent.—immature enterocytes;
Mat. Ent.—mature enterocytes; Prox.—proximal; Dist.—distal. (C) Density over pseudotime for the distal enterocyte trajectory from Fig 7A. Colours represent the dominant
cluster labels in each pseudotime bin. (D) Abstracted graph representation of the dataset projected onto a UMAP representation. Clusters are shown as coloured nodes.
Clusters that appear in other trajectories are labelled for comparison. “TA” denotes transit amplifying cells. (E) Gene expression dynamics over pseudotime in a general
enterocyte trajectory using the “GAM” R library.
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paths is described by a pseudotime variable. While this variable is

related to transcriptional distances from a root cell, it is often inter-

preted as a proxy for developmental time (Moignard et al, 2015; Hagh-

verdi et al, 2016; Fischer et al, 2018; Griffiths et al, 2018).

Since Monocle (Trapnell et al, 2014) and Wanderlust (Bendall

et al, 2014) established the TI field, the number of available meth-

ods has exploded. Currently available TI methods differ in the

complexity of the paths that are modelled. Models range from

simple linear or bifurcating trajectories, to complex graphs, trees,

or multifurcating trajectories. In a recent comprehensive compar-

ison of TI methods (Saelens et al, 2018), it was concluded that no

individual method performs optimally for all types of trajectories.

Instead, TI methods should be selected based on the complexity of

the expected trajectory. The comparison revealed that Slingshot

(Street et al, 2018) outperformed other methods for simple trajec-

tories that range from linear to bi- and multifurcating models. If

more complex trajectories are expected, PAGA (Wolf et al, 2019)

was recommended by the authors. If the exact trajectory model is

known, one can alternatively use more specialized methods to

improve performance (Saelens et al, 2018). Generally, any inferred

trajectory should be confirmed with an alternative method to avoid

method bias.

In a typical workflow, TI methods are applied to reduced data

or to corrected data when there is an inbuilt dimensionality

reduction step. As multiple biological processes are typically

occurring simultaneously within cells, it may be useful to regress

out the biological effects of other processes to isolate the expected

trajectory. For example, T cells may be undergoing cell cycle

transitions during maturation (Buettner et al, 2015). Furthermore,

as several top-performing TI methods rely on clustered data, TI is

typically performed after clustering. Clusters in inferred trajecto-

ries may represent stable or metastable states (see “Metastable

states”; Fig 7B and C). Subsequently, RNA velocities can be over-

layed onto the trajectory to add directionality (La Manno et al,

2018).

Inferred trajectories do not have to represent biological processes.

In the first instance, these only denote transcriptional similarity. Few

TI methods include an evaluation of uncertainty in their model (Grif-

fiths et al, 2018). Thus, further information is needed to validate

whether a biological process was indeed captured. This information

can come in the form of perturbation experiments, inferred regulatory

gene dynamics, and support from RNA velocity.

Pitfalls & recommendations:

• We recommend using the Saelens et al (2018) review as a guide.

• Inferred trajectories do not have to represent a biological process.
Further sources of evidence should be collected to interpret a trajectory.

Gene expression dynamics

One approach to garner support that an inferred trajectory is not the

result of fitting transcriptional noise is to analyse the trajectory on the

gene level. Genes that vary smoothly across pseudotime characterize

the trajectory and can be used to identify the underlying biological

process. Furthermore, this group of trajectory-associated genes is

expected to contain genes that regulate the modelled process.

Regulator genes help us understand how and why biological processes

are triggered and represent potential drug targets (Gashaw et al, 2012).

While early approaches to find trajectory-associated genes

involved DE testing between cell clusters along a trajectory (Hagh-

verdi et al, 2016; Alpert et al, 2018), we now detect genes that vary

across a trajectory by regressing gene expression against pseudo-

time. In order to enforce smooth variation of expression along this

covariate, pseudotime is smoothed by fitting a spline or via an addi-

tional local regression step (e.g. loess). Regression frameworks dif-

fer in their noise model assumptions and the class of function used

to describe the expression as a function of pseudotime. Potential

regulatory genes are obtained by performing model selection for the

genes’ dependence on pseudotime. This DE test over pseudotime is

confounded by the trajectory inference method in the same way that

DE testing between clusters is confounded by the clustering method

(see “Cluster annotation” section). Thus, P-values obtained in this

set-up should not be regarded as an evaluation of significance.

Currently few dedicated gene temporal dynamics tools exist.

BEAM is a tool integrated into the Monocle TI pipeline (Qiu et al,

2017a), which allows for detection of branch-specific gene dynam-

ics. Outside of this pipeline, users can opt for LineagePulse (https://

github.com/YosefLab/LineagePulse), which considers dropout noise

but is still in development, or write their own testing framework

using the limma package (Ritchie et al, 2015) or standard R

libraries. An example of this can be found in the online Slingshot

tutorial (Street et al, 2018) and in Fig 7E.

Given the few available tools, a best practice for investigating gene

temporal dynamics cannot yet be determined. Exploratory investiga-

tion of gene dynamics is surely possible using all above methods. In

future, Gaussian processes may provide a natural model to investigate

gene temporal dynamics. Furthermore, testing for regulatory modules

rather than individual genes would likely improve the signal-to-noise

ratio and facilitate the biological interpretation.

Metastable states

Cell-level analysis of trajectories investigates cellular densities across

pseudotime. Assuming that cells were sampled in an unbiased manner,

dense regions along a trajectory indicate preferred transcriptomic

states. When interpreting the trajectory as a temporal process, these

dense regions may represent metastable states in, for example, devel-

opment (Haghverdi et al, 2016). We can find these metastable states

by plotting histograms of the pseudotime coordinate (Fig 7C).

Cell-level analysis unification
Clustering and trajectory inference represent two distinct views of

single-cell data. These two views can be reconciled in coarse-

grained graph representations. By representing single-cell clusters as

nodes, and trajectories between the clusters as edges, one can repre-

sent both the static and dynamic nature of the data. This unification

was proposed by the partition-based graph abstraction tool (PAGA;

Fig 7D; Wolf et al, 2019). Using a statistical model for cell cluster

interactions, PAGA places an edge between cluster nodes whose

cells are more similar than expected. PAGA has been favourably

compared to other TI methods in a recent review (Saelens et al,

2018). It was the only reviewed method able to cope with discon-

nected topologies and complex graphs containing cycles. This

feature makes PAGA a helpful tool to visualize the topology of the

entire dataset also for exploratory analysis.
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Gene-level analysis
While we have so far focused on gene-level analysis methods that

characterize cellular structures, gene-level analysis of single-cell

data has a broader scope. Differential expression testing, gene set

analyses and gene regulatory network inference directly investigate

molecular signals in the data. Rather than describing the cellular

heterogeneity, these approaches use this heterogeneity as context in

which gene expression is to be understood.

Differential expression testing

A common question asked of expression data is whether any genes

are differentially expressed between two experimental conditions.

DE testing is a well-documented problem that originates from bulk

gene expression analysis (Scholtens & von Heydebreck, 2005). An

advantage over bulk differential testing is that we can account for

cellular heterogeneity in the single-cell setting by performing tests

within cell-identity clusters. This set-up tells us how individual cell

identities react transcriptionally under particular experimental

conditions (Kang et al, 2018).

Although designed to answer the same question, bulk and single-cell

DE tools differ methodologically. While bulk methods were developed

to accurately estimate gene variance from few samples, single-cell data

do not present this problem. On the other hand, single-cell data contain

unique technical noise artefacts such as dropout, and high cell-to-cell

variability (Hicks et al, 2017; Vallejos et al, 2017). These artefacts are

taken into account in methods designed specifically for single-cell data

(Kharchenko et al, 2014; Finak et al, 2015). Yet, a recent, large-scale

comparison study of DE analysis has suggested that bulk DE testing

packages perform comparably to the best-performing single-cell tools

(Soneson & Robinson, 2018). Furthermore, when bulk tools are

adapted to model single-cell data via introducing gene weights into the

tests, these tools have been suggested to outperform their single-cell

counterparts (Van den Berge et al, 2018). According to this compar-

ison, the top-performing DE analysis tools are DESeq2 (Love et al,

2014) and EdgeR (Robinson et al, 2010) in combination with weights

estimated by ZINB-wave (Risso et al, 2018). Independent comparison

studies that include weighted bulk DE testing methods are required to

confirm these results.

The improved performance of weighted bulk DE testing comes at

the cost of computational efficiency. Given the trend of increasing cell

numbers in single-cell experiments, algorithm runtime is becoming an

increasingly important consideration in method choice. Thus, the

single-cell tool MAST (Finak et al, 2015) represents a potent alternative

to weighted bulk DE tools. MAST uses a hurdle model to account for

dropout while modelling changes in gene expression dependent upon

condition and technical covariates. It was the best-performing single-

cell DE testing method in the aforementioned study (Soneson & Robin-

son, 2018), and outperformed bulk and single-cell methods in a small-

scale comparison on a single dataset (Vieth et al, 2017). While MAST

has a 10-fold to 100-fold faster runtime than weighted bulk methods

(Van den Berge et al, 2018), a further 10-fold speedup can be achieved

using limma–voom (Law et al, 2014). Although limma is a bulk DE

testing method, limma–voom was shown to achieve comparable

performance to MAST.

As uncorrected, measured data should be used for DE testing,

accounting for confounding factors is crucial to robust estimation of

differentially expressed genes. While DE testing tools typically allow

the user the flexibility to incorporate confounders, users must be

vigilant which variables are added to the model. For example, in

most single-cell experimental set-ups the sample and condition

covariates are confounded, since it is rarely possible to obtain a

single sample under multiple conditions. If we incorporate both the

sample and condition covariates into the model, the variability asso-

ciated with these covariates can no longer unambiguously be

assigned. Thus, when testing over condition, we cannot include the

sample covariate in the model in the given form. When correcting

for multiple categorical batch covariates, it becomes increasingly dif-

ficult to visually spot confounding groups of covariates. In this situa-

tion, it is helpful to test whether the model design matrix is full rank.

Even when design matrices are not full rank, DE testing tools will

often adapt the matrix and run without outputting a warning. This

will not deliver the intended results.

In the scenario we describe here, the condition covariate is deter-

mined in the experimental set-up. Thus, a DE test over this covariate

(within the same cluster) is independent of the clustering procedure.

This set-up distinguishes DE testing over conditions and DE testing

over clusters. Obtained P-values for DE tests over conditions repre-

sent the expected measures of significance and must be corrected

for multiple testing. To reduce the multiple testing burden, tran-

scripts that may not be of interest can be excluded from the dataset.

While pseudogenes or non-coding RNAs can be informative (An

et al, 2017), they are often ignored in the analysis.

Pitfalls & recommendations:

• DE testing should not be performed on corrected data (denoised,
batch corrected, etc.), but instead on measured data with technical
covariates included in the model.

• Users should not rely on DE testing tools to correct models with
confounded covariates. Model specification should be performed care-
fully ensuring a full-rank design matrix.

• We recommend using MAST or limma for DE testing.

Gene set analysis

Gene-level analysis methods often produce long lists of candidate

genes that are difficult to interpret. For example, thousands of genes

may be differentially expressed between treated and control cells.

We can facilitate the interpretation of these results by grouping

the genes into sets based on shared characteristics and testing

whether these characteristics are overrepresented in the candidate

gene list.

Gene set information can be found in curated label databases for

various applications. To interpret DE results, we typically group

genes based on involvement in common biological processes.

Biological process labels are stored in databases such as MSigDB

(Liberzon et al, 2011), the Gene Ontology (Ashburner et al, 2000;

The Gene Ontology Consortium, 2017), or the pathway databases

KEGG (Kanehisa et al, 2017) and Reactome (Fabregat et al, 2018).

Enrichment of annotations on the gene list can be tested using a vast

array of tools, which are reviewed and compared in Huang et al

(2009) and Tarca et al (2013).

A recent development in the single-cell analysis field is the use of

paired gene labels to perform ligand–receptor analysis. Here, inter-

action between cell clusters is inferred from the expression of recep-

tors and their cognate ligands. Ligand–receptor pair labels can be
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obtained from the recent CellPhoneDB (Vento-Tormo et al, 2018)

and used to interpret the highly expressed genes across clusters

using statistical models (Zepp et al, 2017; Zhou et al, 2017; Cohen

et al, 2018; Vento-Tormo et al, 2018).

Gene regulatory networks

Genes do not function independently. Instead, the expression level

of a gene is determined by a complex interplay of regulatory interac-

tions with other genes and small molecules. Uncovering these regu-

latory interactions is the goal of gene regulatory network (GRN)

inference methods.

Gene regulatory network inference is performed based on

measurements of gene co-expression such as correlation, mutual

information, or via regression models (Chen & Mar, 2018). If two

genes show a co-expression signal even when all other genes are

taken into account as potential confounders, these genes are said to

have a causal regulatory relationship. Inferring gene regulatory rela-

tionships is related to the detection of trajectory-associated regula-

tory genes. Indeed, several single-cell GRN inference methods use

trajectories with mechanistic differential equation models (Ocone

et al, 2015; Matsumoto et al, 2017).

While there exist GRN inference methods that were specifically

developed for scRNA-seq data (SCONE: Matsumoto et al, 2017;

PIDC: Chan et al, 2017; SCENIC: Aibar et al, 2017), a recent

comparison has shown both bulk and single-cell methods to

perform poorly on these data (Chen & Mar, 2018). GRN inference

methods may still offer valuable insights to identify causal regula-

tors of biological processes, yet we recommend that these methods

be used with care.

Pitfalls & recommendations:

• Users should be wary of uncertainty in the inferred regulatory rela-
tionships. Modules of genes that are enriched for regulatory relation-
ships will be more reliable than individual edges.

Analysis platforms

Single-cell analysis workflows are collations of independently devel-

oped tools. To facilitate the movement of data between these tools,

single-cell platforms have been developed around consistent data

formats. These platforms provide a basis for the construction of

analysis pipelines. Currently available platforms exist on the

command line in R (McCarthy et al, 2017; Butler et al, 2018) or

Python (Wolf et al, 2018), and as local applications (Patel, 2018;

preprint: Scholz et al, 2018) or Web servers (Gardeux et al, 2017;

Zhu et al, 2017) with graphical user interfaces (GUIs). An overview

of platforms is available in Zhu et al (2017) and Zappia et al (2018).

Among command line platforms, Scater (McCarthy et al, 2017)

and Seurat (Butler et al, 2018) easily interface with the large variety

of analysis tools available via the R Bioconductor project (Huber

et al, 2015). Scater has a particular strength in QC and pre-proces-

sing, while Seurat is arguably the most popular and comprehensive

platform, which includes a large array of tools and tutorials. A recent

addition to this group is scanpy (Wolf et al, 2018), a growing Python-

based platform, which exhibits improved scaling to larger numbers of

cells. It leverages the increasing number of tools written in Python,

which is particularly popular for machine learning applications.

Graphical user interface platforms enable non-expert users to

build single-cell analysis workflows. Users are often guided

through prescribed workflows that facilitate the analysis, but also

limit user flexibility. These platforms are especially useful for

exploratory analysis. Platforms such as Granatum (Zhu et al,

2017) and ASAP (Gardeux et al, 2017) differ in the tools they

integrate, with Granatum including the larger variety of methods.

As Web servers, these two platforms are readily available, yet

computational infrastructure will limit their ability to scale to

large datasets. For example, ASAP was tested on a dataset of

only 92 cells. Alternatives to the Web-based GUI platforms are

packages such as FASTGenomics (preprint: Scholz et al, 2018),

iSEE (Rue-Albrecht et al, 2018), IS-CellR (Patel, 2018), and

Granatum run on a local server. These are platforms and GUI

wrappers that can scale with the locally available computational

power. In future, the ongoing development of the Human Cell

Atlas portals (https://www.humancellatlas.org/data-sharing)

will lead to more powerful visual data exploration tools that

scale to large cell numbers.

Conclusions and outlook

We have reviewed the steps of a typical scRNA-seq analysis work-

flow and implemented these in a case study tutorial (https://www.

github.com/theislab/single-cell-tutorial). The tutorial was designed

to follow current best practices as determined by available method

comparisons. While aggregating individual best-practice tools does

not guarantee an optimal pipeline, we hope that our workflow repre-

sents a current snapshot of the state of the art in the single-cell analy-

sis field. It thus provides a suitable entry point into this field for

newcomers and contributes to the efforts of the Human Cell Atlas to

establish best practices in scRNA-seq analysis (preprint: Regev et al,

2018). It should be noted that available method comparisons neces-

sarily lag behind the latest method developments. Thus, we have

mentioned new developments that have not yet been independently

evaluated where possible. With the future development of new and

better tools, and further comparative studies, the individual tool

recommendations presented here will require updates, yet the

general considerations regarding the stages of data processing should

remain the same.

Two avenues of development that are of particular interest due

to their potential for disruption to analysis pipelines are deep learn-

ing workflows and single-cell omic integration. Due to its flexibility

to scale to large data, deep learning has revolutionized fields from

computer vision to natural language processing, and is starting to

have a strong impact in genomics (Webb, 2018). First applications

to scRNA-seq are starting to emerge from dimensionality reduction

to denoising (e.g. scVis: Ding et al, 2018; scGen: preprint: Lotfollahi

et al, 2018; DCA: Eraslan et al, 2019). Recently, deep learning has

been used to produce an embedded workflow that can fit the data,

denoise it and perform downstream analysis such as clustering and

differential expression within the framework of the model (scVI:

Lopez et al, 2018). In this set-up, it is possible to include noise and

batch effect estimates into downstream statistical tests while

preserving accurate estimates of variation in the data. Integrated
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modelling approaches such as this have the potential to replace

current pipelines, which are often an agglomeration of individual

tools.

As single-cell omic technologies improve, the need for integrated

omic analysis pipelines will grow (Tanay & Regev, 2017). Future

single-cell platforms will have to be able to deal with different data

sources such as DNA methylation (Smallwood et al, 2014), chro-

matin accessibility (Buenrostro et al, 2015), or protein abundance

(Stoeckius et al, 2017), and include tools that integrate these modali-

ties. For this set-up, it will no longer be possible to use only a single

read or count matrix, which we use as the starting point of our tuto-

rial. However, platforms are already adapting to multi-modal data

structures for the integration of RNA velocity, which is calculated

from unspliced and spliced read data (La Manno et al, 2018). Single-

cell multi-omic integration can occur via consensus clustering

approaches, multi-omic factor analysis (Argelaguet et al, 2018), or

multi-omic gene regulatory network inference (Colomé-Tatché &

Theis, 2018). Analysis workflows with these capabilities will be the

next stage of development. We envisage that such multi-omic analy-

sis workflows will build upon the foundation we have laid for scRNA-

seq.

Expanded View for this article is available online.
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