






and we asked whether they could be detected in
the adjacent granular cell layer (GCL). All these
genes were confirmed to be highly expressed in
theMCL by spatial transcriptomics, but they were
undetectable or detected at very low levels within
the GCL, even with the border of the feature 0 to
5 mm and the center of the feature 50 to 55mm
from the MCL (Fig. 2, E and F, and fig. S7A).
Furthermore, we compared the distribution of
transcripts between areas obtained with laser cap-
ture microdissection (6) where there is no diffusion
of transcripts and with spatial transcriptomics
features, and we did not find evidence for a
difference between these methods in terms of
mRNA diffusion (fig. S7, B and C).
A common goal of gene expression analysis of

tissues is to define the transcriptome of specific
areas. Analysis between homologous regions re-
vealed very similar expression profiles (Fig. 3, A
and B, and fig. S8), with no differentially expressed
genes. In contrast, comparison of different domains
revealed different gene expression profiles (Fig.
3, A and C, and fig. S8). This included genes with
previously known restricted expression, such as

Doc2g in the glomerular layer (GL) and Penk in
the GCL (13), as well as novel layer-specific gene
expression profiles (Fig. 3C).
It is valuable to explore the gene expression

pattern of populations of cells or tissue domains
that can be defined by a combination of markers.
Spatial transcriptomics offers an alternative ap-
proach that circumvents multiplex labeling and
cell isolation. Any combination of presence or
absence of expression for a set of genes can be
used to define a marker profile of interest for
further analysis. Features were selected on the
basis of the presence and/or absence of the three
interneuron-marker genes Camk4, Th, and Vip.
The distribution of features, where one of the
genes is expressed alone, is shown in Fig. 3D.
Comparing gene expression revealed specific
transcriptomes defined by these interneuron-
marker profiles (Fig. 3, E and F, and fig. S8).
To further explore gene expression profiles in

spatially defined domainswithin the olfactory bulb,
we used principal component analysis (fig. S9) or
the t-distributed stochastic neighbor embedding
(t-SNE) (14, 15) machine-learning algorithm for

dimensionality reduction, followed by hierarchi-
cal clustering (Fig. 4A). When placing back the
clustered features on the tissue images, it was ap-
parent that each cluster of features largely corre-
sponded to well-definedmorphological layers (Fig.
4B). The clusters were then compared with each
other, which allowed the identification and visu-
alization of cluster-specific marker genes (fig. S10,
A and B). This proved to be an efficient, unbiased
way to identify genes with expression enriched in
the cell layers of interest. Furthermore, we in-
vestigated the gene expression pattern in 10 sec-
tions from a total of five animals, as well as the
feature-to-feature correlation at the same location
in two adjacent sections (fig. S10, C to E).
Analysis of the histology and a set of markers

are routine in cancer diagnostics, although anal-
ysis of the expression of panels of genes has
started to enter the clinic. We asked whether
adding a spatial dimension to gene expression
analysis may add information in cancer diag-
nostics and applied spatial transcriptomics to
breast cancer biopsies. In Fig. 4, C andD (see also
fig. S11, A and B), an area with invasive ductal
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Fig. 3. Visualization and bioinformatics analyses of tissue domains de-
fined by morphology or gene expression profile. (A) Ten selected features
in areas a (GCL), b (GCL), or g (GL) are indicated. (B) Scatterplot of gene
expression in areas a and b shows similar expression of layer-specific genes.
Examples of genes are indicated with purple and brown dots. Housekeeping
genes are orange. (C) Scatterplot of gene expression in areas a and g shows a
difference in gene expression. Examples from the 170 differentially expressed

genes are labeled. (D) The spatial expression of three interneuron-marker–
gene profiles.Ten features with the different expression profiles were randomly
selected for differential expression analysis. (E) Comparing the 10Camk4+/Vip–/
Th– features with the 10 Vip+/Camk4–/Th– features. Examples, out of the 196
differentially expressed genes, are labeled. (F) Comparing the 10 Camk4+/Vip–/
Th– features with the 10 Th+/Camk4–/Vip– features. Examples from the 328
differentially expressed genes are labeled.
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cancer, as well as six separate areas of ductal can-
cer in situ, were identified on the basis of mor-
phological criteria. Spatial transcriptomics analysis
of the invasive component revealed high expres-
sion of extracellular matrix–associated genes (Fig.
4E). Analysis of the ductal cancer in situ areas
revealed a surprisingly high degree of heteroge-
neity in gene expression between these regions,
probably reflecting different subclones, with vary-
ing expression of several genes implicated in can-
cer progression (Fig. 4E and fig. S11C). For example,
expression of KRT17 and GAS6, implicated in
epithelial-to-mesenchymal transition (16, 17), was
high only in areas 1 and 5 (Fig. 4, C to E, and fig
S11). Thus, spatial transcriptomics revealed un-
expected heterogeneity within a biopsy, which
would not be possible to detect with regular tran-
scriptome analysis and which may give more de-
tailed prognostic information.
Spatial transcriptomics calls for only a few ex-

tra steps compared with RNA-seq analysis of
homogenized tissue, with the benefit of providing
spatial information enabling additional levels of
analysis. In contrast to standardmethods, different
domains of the tissue are processed in the same
reaction in spatial transcriptomics, which removes
technical variation between samples. A unique fea-
ture of spatial transcriptomics is that any gene ex-

pression profile can be selected to specify a
molecularly defined domain for further analysis.
Finally, in contrast to when different regions of a
tissue are dissected for analysis, the information for
thewhole section ismaintained; hence, the analysis
is not limited to the initially selected regions. An
individual spatial transcriptomics experiment thus
serves as a permanent resource to investigate gene
expression patterns for future research questions.
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Fig. 4. Comparative analyses of tissue domains. (A) t-SNE analysis and hierarchical clustering of 551 features from two replicates creates five distinct clusters.
(B) The features placed back onto the two tissue images. (C andD) Histological section of a breast cancer biopsy (C) containing invasive ductal cancer (INV) and
six separate areas of ductal cancer in situ (1 to 6),with analyzed spatial transcriptomics features in (D). INVareaswithout, or withminimal, stromal infiltrationwere
selected. (E) Gene expression heat map over the different areas in four adjacent sections (D) and (fig. S11).
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can do so for multiple genes.
performing reverse transcription followed by sequencing and computational reconstruction, and they
annealing fixed brain or cancer tissue samples directly to bar-coded reverse transcriptase primers, 

 have developed a way of measuring the spatial distribution of transcripts byet al.sequencing. Ståhl 
methods typically lose positional information and many require arduous single-cell isolation and 

RNA-seq and similar methods can record gene expression within and among cells. Current
Spatial structure of RNA expression
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