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The Cancer Genome Atlas (TCGA) has profiled over 10,000 tumors across 33 different
cancer-types for many genomic features, including gene expression levels. Gene expression
measurements capture substantial information about the state of each tumor. Certain classes
of deep neural network models are capable of learning a meaningful latent space. Such a
latent space could be used to explore and generate hypothetical gene expression profiles
under various types of molecular and genetic perturbation. For example, one might wish
to use such a model to predict a tumor's response to specific therapies or to characterize
complex gene expression activations existing in differential proportions in different tumors.
Variational autoencoders (VAEs) are a deep neural network approach capable of generating
meaningful latent spaces for image and text data. In this work, we sought to determine
the extent to which a VAE can be trained to model cancer gene expression, and whether
or not such a VAE would capture biologically-relevant features. In the following report, we
introduce a VAE trained on TCGA pan-cancer RNA-seq data, identify specific patterns
in the VAE encoded features, and discuss potential merits of the approach. We name our
method “Tybalt” after an instigative, cat-like character who sets a cascading chain of events
in motion in Shakespeare's “Romeo and Juliet”. From a systems biology perspective, Tybalt
could one day aid in cancer stratification or predict specific activated expression patterns
that would result from genetic changes or treatment effects.

Keywords: Deep Learning; Gene Expression; Variational Autoencoder, The Cancer Genome
Atlas

1. Introduction

Deep learning has improved the state of the art in many domains, including image, speech,
and text processing, but it has yet to make significant enough strides in biomedicine for it to
be considered transformative.1 Nevertheless, several studies have revealed promising results.
For instance, Esteva et al. used convolutional neural networks (CNNs) to diagnose melanoma
from skin images and Zhou and Troyanskaya trained deep models to predict the impact of non-
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coding variants.2,3 However, several domain specific limitations remain. In contrast to image or
text data, validating and visualizing learning in biological datasets is particularly challenging.
There is also a lack of ground truth labels in biomedical domains, which often limits the
efficacy of supervised models. New unsupervised deep learning approaches such as generative
adversarial nets (GANs) and variational autoencoders (VAEs) harness the modeling power of
deep learning without the need for accurate labels.4–6 Unlike traditional CNNs, which model
data by minimizing inaccurate class predictions, autoencoder models, including VAEs, learn
through data reconstruction. Reconstructing gene expression input data using autoencoder
frameworks has been previously shown to reveal novel biological patterns.7–9

VAEs and GANs are generative models, which means they learn to approximate a data
generating distribution. Through approximation and compression, the models have been shown
to capture an underlying data manifold — a constrained, lower dimensional space where data
is distributed — and disentangle sources of variation from different classes of data.10,11 For
instance, a recent group trained adversarial autoencoders on chemical compound structures
and their growth inhibiting effects in cancer cell lines to learn manifold spaces of effective small
molecule drugs.12,13 Additionally, Rampasek et al. trained a VAE to learn a gene expression
manifold of reactions of cancer cell lines to drug treatment perturbation.14 The theoretical
basis for modeling cancer using lower dimensional manifolds is established, as it has been
previously hypothesized that cancer exists in “basins of attraction” defined by specific pathway
aberrations that drive cells toward cancer states.15 These states could be revealed by data
driven manifold learning approaches.

The Cancer Genome Atlas (TCGA) has captured several genomic measurements for over
10,000 different tumors across 33 cancer-types.16 TCGA has released this data publicly, en-
abling many secondary analyses, including the training of deep models that predict survival.17

One data type amenable to modeling manifold spaces is RNA-seq gene expression because it
can be used as a proxy to describe tumor states and the downstream consequences of specific
molecular aberration. Biology is complex, consisting of multiple nonlinear and often redundant
connections among genes, and when a specific pathway aberration occurs, the downstream re-
sponse to the perturbation is captured in the transcriptome. In the following report, we extend
the autoencoder framework by training and evaluating a VAE on TCGA RNA-seq data. We
aim to demonstrate the validity and specific latent space benefits of a VAE trained on gene
expression data. We do not aim to comprehensively profile all learned pan-cancer VAE features
nor survey clinical implications. We also do not compare our approach to alternate dimension-
ality reduction algorithms, but instead present our model as an additional tool in the toolkit
for extracting knowledge from gene expression. We shall name this model “Tybalt”.

2. Methods

2.1. Model Summary

VAEs are data driven, unsupervised models that can learn meaningful latent spaces in many
contexts. In this work, we aim to build a VAE that compresses gene expression features and
reveals a biologically relevant latent space. The VAE is based on an autoencoding framework,
which can discover nonlinear explanatory features through data compression and nonlinear
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activation functions. A traditional autoencoder consists of an encoding phase and a decod-
ing phase where input data is projected into lower dimensions and then reconstructed.18 An
autoencoder is deterministic, and is trained by minimizing reconstruction error. In contrast,
VAEs are stochastic and learn the distribution of explanatory features over samples. VAEs
achieve these properties by learning two distinct latent representations: a mean and standard
deviation vector encoding. The model adds a Kullback-Leibler (KL) divergence term to the
reconstruction loss, which also regularizes weights through constraining the latent vectors to
match a Gaussian distribution. In a VAE, these two representations are learned concurrently
through the use of a reparameterization trick that permits a back propagated gradient.4 Im-
portantly, new data can be projected onto an existing VAE feature space enabling new data
to be assessed.

2.2. Model Implementation

VAEs have been shown to generate “blurry” data compared with other generative models,
including GANs, but VAEs are also generally more stable to train.19 We trained our VAE
model, Tybalt, with the following architecture: 5,000 input genes encoded to 100 features and
reconstructed back to the original 5,000 (Figure 1A). The 5,000 input genes were selected
based on highest variability by median absolute deviation (MAD) in the TCGA pan-cancer
dataset.

We initially trained Tybalt without batch normalization,20 but observed that when we
included batch normalization in the encoding step, we trained faster and with heterogeneous
feature activation. Batch normalization in machine learning is distinct from normalizing gene
expression batches together in data processing. In machine learning, batch normalization adds
additional feature regularization by scaling activations to zero mean and unit variance, which
has been observed to speed up training and reduce batch to batch variability thus increasing
generalizability. We trained Tybalt with an Adam optimizer,21 included rectified linear units22

and batch normalization in the encoding stage, and sigmoid activation in the decoding stage.
We built Tybalt in Keras (version 2.0.6)23 with a TensorFlow backend (version 1.0.1).24 For
more specific VAE illustrations and walkthroughs refer to an extended tutorial25 and these
intuitive blog posts.26,27

2.3. Parameter Selection

We performed a parameter sweep over batch size (50, 100, 128, 200), epochs (10, 25, 50, 100),
learning rates (0.005, 0.001, 0.0015, 0.002, 0.0025) and warmups (κ) (0.01, 0.05, 0.1, and 1). κ
controls how much the KL divergence loss contributes to learning, which effectively transitions
a deterministic autoencoder to a VAE.28,29 For instance, a κ = 0.1 would add 0.1 to a weight
on the KL loss after each epoch. After 10 epochs, the KL loss will have equal weight as the
reconstruction loss. We did not observe κ to influence model training (Figure 1B), so we kept
κ = 1 for downstream analyses. We evaluated train and test set loss at each epoch. The test
set was a random 10% partition of the full data. In general, training was relatively stable for
many parameter combinations, but was consistently worse for larger batches, particularly with
low learning rates. Ultimately, the best parameter combination based on validation loss was
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Fig. 1. A variational autoencoder (VAE) applied to model gene expression data. (A) Model wire
diagram of Tybalt encoding a gene expression vector (p= 5,000) into mean (µ) and standard deviation
(σ) vectors (h = 100). A reparameterization trick4,5 enables learning z, which is then reconstructed
back to input (x̃). (B) Training and validation VAE loss across training epochs (full pass through all
training data). Shown across vertical and horizontal facets are values of κ and batch size, respectively.
(C) Final validation loss for all parameters with κ = 1. (D) VAE loss for training and testing sets
through optimized model training.

batch size 50, learning rate 0.0005, and 100 epochs (Figure 1C). Because training stabilized
after about 50 epochs, we terminated training early. Training and testing loss across all 50
epochs is shown in Figure 1D. We performed the parameter sweep on a cluster of 8 NVIDIA
GeForce GTX 1080 Ti GPUs on the PMACS cluster at The University of Pennsylvania.

2.4. Input Data

The input data consisted of level 3 TCGA RNA-seq gene expression data for 9,732 tumors
and 727 tumor adjacent normal samples (10,459 total samples) measured by the 5,000 most
variably expressed genes. The full dataset together is referred to as the pan-cancer data. The
level 3 RNA-seq data consists of a preprocessed and batch-corrected gene abundance by sample
matrix measured by log2(FPKM + 1) transformed RSEM values. The most variably expressed
genes were defined by median absolute deviation (MAD). In total, there were 33 different
cancer-types (including glioblastoma, ovarian, breast, lung, bladder cancer, etc.) profiled, each
with varying number of tumors. We accessed RNA-seq data from the UCSC Xena data browser
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on March 8th, 2016 and archived the data in Zenodo.30 To facilitate training, we min-maxed
scaled RNA-seq data to the range of 0− 1. We used corresponding clinical data accessed from
the Snaptron web server.31

2.5. Interpretation of Gene Weights

Much like the weights of a deterministic autoencoder, Tybalt's decoder weights captured the
contribution of specific genes to each learned feature.7,8,32 For most features, the distribution of
gene weights was similar: Many genes had weights near zero and few genes had high weights at
each tail. In order to characterize patterns explained by selected encoded features of interest,
we performed overrepresentation pathway analyses (ORA) separately for both positive and
negative high weight genes; defined by greater than 2.5 standard deviations above or below
the mean, respectively. We used WebGestalt,33 with a background of the 5,000 assayed genes,
to perform the analysis over gene ontology (GO) biological process terms.34 P values are
presented after an Benjamini-Hochberg FDR adjustment.

2.6. The Latent Space of Ovarian Cancer Subtypes

Image processing studies have shown the remarkable ability of generative models to mathe-
matically manipulate learned latent dimensions.35,36 For example, subtracting the image latent
representation of a neutral man from a smiling man and adding it to a neutral woman, re-
sulted in a vector associated with a smiling woman. We were interested in the extent to
which Tybalt learned a manifold representation that could be manipulated mathematically
to identify state transitions across high grade serous ovarian cancer (HGSC) subtypes. The
TCGA naming convention of these subtypes is mesenchymal, proliferative, immunoreactive,
and differentiated.37

To characterize the largest differences between the mesenchymal/immunoreactive and pro-
liferative/differentiated HGSC subtypes, we performed a series of mean HGSC subtype vector
subtractions in Tybalt latent space:

θ̄k =

∑n
i=1 zi,1(ik = k)

nk
, . . . ,

∑n
i=1 zi,100(ik = k)

nk
(1)

θ̄immunoreactive − θ̄mesenchymal = θ̄immuno-mes (2)

θ̄differentiated − θ̄proliferative = θ̄diff-prolif (3)

Where (ik = k) is an indicator function if sample i has membership with subtype k and
z is the encoded layer. We used tumor subtype assignments provided for TCGA samples in
Verhaak et al. 2013.38 If Tybalt learned a biological manifold, this subtraction would result in
the identification of biologically relevant features stratifying tumors of specific subtypes with
a continuum of expression states.

2.7. Enabling Exploration through Visualization

We provide a Shiny app to interactively visualize activation patterns of encoded Tybalt fea-
tures with covariate information at https://gregway.shinyapps.io/pancan_plotter/.
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3. Results

Tybalt compressed tumors into a lower dimensional space, acting as a nonlinear dimensionality
reduction algorithm. Tybalt learned which genes contributed to each feature, potentially cap-
turing aberrant pathway activation and treatment vulnerabilities. Tybalt was unsupervised;
therefore, it could learn both known and unknown biological patterns. In order to determine
if the features captured biological signals, we characterized both sample- and gene-specific
activation patterns.

3.1. Tumors were encoded in a lower dimensional space

The tumors were encoded from original gene expression vectors of 5,000 MAD genes into a
lower dimensional vector of length 100. To determine if the sample encodings faithfully reca-
pitulated large, tissue specific signals in the data, we visualized sample-specific Tybalt encoded
features (z vector for each sample) by t-distributed stochastic neighbor embedding (t-SNE).39

We observed similar patterns for Tybalt encodings (Figure 2A) as compared to 0−1 normalized
RNA-seq data (Figure 2B). Tybalt geometrically preserved well known relationships, includ-
ing similarities between glioblastoma (GBM) and low grade glioma (LGG). Importantly, the
recapitulation of tissue-specific signal was captured by non-redundant, highly heterogeneous
features (Figure 2C). Based on the hierarchical clustering dendrogram, the features appeared
to be capturing distinct signals. For instance, tumor versus normal and patient sex are large
signals present in cancer gene expression, but they were distributed uniformly in the clustering
solution indicating non-redundant feature activations.

3.2. Features represent biological signal

Our goal was to train and evaluate Tybalt on its ability to learn biological signals in the data
and not to perform a comprehensive survey of learned features. Therefore, we investigated
whether or not Tybalt could distinguish patient sex and patterns of metastatic activation.
We determined that the model extracted patient sex robustly (Figure 3A). Feature encoding
82 nearly perfectly separated samples by sex. Furthermore, we identified a set of nodes that
together identified skin cutaneous melanoma (SKCM) tumors of both primary and metastatic
origin (Figure 3B).

The weights used to decode the hidden layer (z vector) back into a high-fidelity reconstruc-
tion of the input can capture important and consistent biological patterns embedded in the
gene expression data.7,8,32 For instance, there were only 17 genes needed to identify patient sex
(Figure 3C). These genes were mostly located on sex chromosomes. The two positive weight
genes were X inactivation genes XIST and TSIX, while the negative weight genes were mostly
Y chromosome genes such as EIF1AY, UTY, and KDM5D. This result served as a positive
control that the unsupervised model was able to construct a feature that described a clearly
biological source of variance in the data.

There were several genes contributing to the two encoded features that separated the
SKCM tumors (Figure 3D). Several genes existed in the high weight tails of each distribution
for feature encodings 53 and 66. We performed an ORA on the high weight genes. In general,
several pathways were identified as overrepresented in the set as compared to random. The
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Fig. 2. Samples encoded by a variational autoencoder retain biological signals. (A) t-distributed
stochastic neighbor embedding (t-SNE) of TCGA pan-cancer tumors with Tybalt encoded features.
(B) t-SNE of 0-1 normalized gene expression features. Tybalt retains similar signals as compared to
uncompressed gene expression data. (C) Full Tybalt encoding features by TCGA pan-cancer sample
heatmap. Given on the y axis are the patients sex and type of sample.

samples had intermediate to high levels of feature encoding 53, which did not correspond to
any known GO term, potentially indicating an unknown but important biological process. The
samples also had intermediate to high levels of encoding 66 which implicated GO terms related
to cholesterol, ethanol, and lipid metabolism including regulation of intestinal cholesterol
absorption (adj. p = 3.0e−2), ethanol oxidation (adj. p = 4.0e−02), and lipid catabolic process
(adj. p = 4.0e−02). SKCM samples had consistently high activation of both encoded features,
which separated them from other tumors. Nevertheless, more research is required to determine
how VAE features could be best interpreted in this context.

3.3. Interpolating the lower dimensional manifold of HGSC subtypes

We performed an experiment to test whether or not Tybalt learned manifold differences of
distinct HGSC subtypes. Previously, several groups identified four HGSC subtypes using gene
expression.37,40,41 However, the four HGSC subtypes were not consistently defined across pop-
ulations; the data suggested the presence of three subtypes or fewer.42 The study observed
that the immunoreactive/mesenchymal and differentiated/proliferative tumors consistently
collapsed together when setting clustering algorithms to find 2 subtypes.42 This observation
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Fig. 3. Specific examples of Tybalt features capturing biological signals. (A) Encoding 82 strati-
fied patient sex. (B) Together, encodings 53 and 66 separated melanoma tumors. Distributions of
gene coefficients contributing to each plot above for (C) patient sex and (D) melanoma. The gene
coefficients consist of the Tybalt learned weights for each feature encoding.

may suggest the presence of distinct gene expression programs existing on an activation spec-
trum driving differences in these subtypes. Therefore, we hypothesized that Tybalt would
learn the manifold of gene expression spectra existing in differential proportions across these
subtypes.

The largest feature encoding difference between the mean HGSC mesenchymal and the
mean immunoreactive subtype (θ̄immuno-mes) was encoding 87 (Figure 4A). Encoding 77 and
encoding 56 (Figure 4B) also distinguished the mesenchymal and immunoreactive subtypes.
The largest feature encoding differences between the mean proliferative and the mean dif-
ferentiated subtype (θ̄diff-prolif) were contributed by encoding 79 (Figure 4C) and encoding 38
(Figure 4D). Interestingly, encoding 38 had high mean activation in both the immunoreactive
and differentiated subtypes.

The mesenchymal subtype had the highest encoding 87 activation. Encoding 87 was as-
sociated with the expression of genes involved in collagen and extracellular matrix processes
(Table 1), which has been previously observed to be an important marker of the mesenchymal
subtype.37,40 Encoding 56 was associated with immune system responses (Table 1), and the im-
munoreactive subtype displayed the highest activation. Encoding 79 is mostly expressed in the
proliferative subtype and has low activation in differentiated tumors. The high weight negative
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Fig. 4. Largest mean differences in HGSC subtype vector subtraction for each subtype. Subtracting
the mesenchymal subtype by the immunoreactive results in distribution differences in (A) feature
encoding 87 and (B) encoding 56. Subtracting the proliferative subtype by the differentiated subtype
results in differences between (C) feature encoding 79 and (D) encoding 38.

genes of encoding 79 were associated with glucuronidation processes (Table 1). The negative
genes of encoding 38, which also distinguished differentiated from proliferative tumors but
in the opposite direction, were also associated with glucuronidation. Previously, glucuronida-
tion processes were observed to be associated with response to chemotherapy and survival in
colon cancer patients.43,44 Our results indicate that differential activation of glucuronidation
is a strong signal distinguishing HGSC subtypes. This observation may also help to explain
increased survival in HGSC patients with differentiated tumors.41 Lastly, encoding 77 also sep-
arated immunoreactive from mesenchymal tumors and did not display any significant terms,
which may indicate novel biology explaining undiscovered subtype differences.

4. Conclusion

Tybalt is a promising model but still requires careful validation and more comprehensive
evaluation. We observed that the encoded features recapitulated tissue specific patterns. We
determined that the learned features were generally non-redundant and could disentangle large
sources of variation in the data, including patient sex and SKCM. It is also likely that the
features learn tissue specific patterns distinguishing other cancer-types (our shiny app enables
full exploration of VAE features by cancer-type). While we identified specific features sepa-
rating HGSC subtypes, there are likely several other features that describe other important
biological differences across cancer-types including differentiation state and activation states
of specific pathways. Interpretation of the decoding layer weights helped to identify the con-
tribution of different genes and pathways promoting disparate biological patterns. However,
interpretation by pathway analysis must be performed with caution as these analyses rely on
incomplete pathway databases and may contain many false positive results.

Pacific Symposium on Biocomputing 2018

88

 B
io

co
m

pu
tin

g 
20

18
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

13
.2

38
.1

20
.2

40
 o

n 
09

/3
0/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Table 1. Summary of significantly overrepresented pathways separating HGSC subtypes

Encoding Tail Subtype Enrichment Pathway Adj. p value

87 + Mesenchymal Collagen Catabolic Process 1.8e−09

87 + Mesenchymal Extracellular Matrix Organization 4.2e−06

87 - Immunoreactive Urate Metabolic Process 1.5e−02

56 + Immunoreactive Immune Response 1.3e−12

56 + Immunoreactive Defense Response 2.9e−12

56 + Immunoreactive Regulation of Immune System Process 8.0e−07

56 - Mesenchymal No significant pathways identified
79 + Proliferative Chemical Synaptic Transmission 9.1e−03

79 - Differentiated Xenobiotic Glucuronidation 2.1e−09

38 + Differentiated No significant pathways identified
38 - Proliferative Xenobiotic Glucuronidation 7.2e−06

VAEs provide similar benefits as autoencoders, but they also have the ability to learn a
manifold with meaningful relationships between samples. This manifold could represent dif-
fering pathway activations, transitions between cancer states, or indicate particular tumors
vulnerable to specific drugs. We performed initial testing to determine if we could traverse
the underlying manifold by subtracting out cancer-type specific mean activations. While we
identified several promising functional relationships existing in a spectrum of activation pat-
terns, rigorous experimental testing would be required to draw strong conclusions about the
biological implications. The specific subtype associations must be confirmed in independent
datasets and the processes must be confirmed experimentally. It must also be assessed if
Tybalt features learned from TCGA pan-cancer are generalizable to other, potentially more
heterogeneous datasets. Further testing is required to confirm that Tybalt catalogued an inter-
pretable manifold capable of interpolation between cancer states. In the future, we will develop
higher capacity models and increased evaluation/interpretation efforts to catalog Tybalt en-
coded RNA-seq expression patterns present in specific cancer-types. This effort will lead to
widespread stratification of expression patterns and enable accurate detection of samples who
may benefit from specific targeted therapies.

5. Reproducibility

We provide all scripts to reproduce and to build upon this analysis under an open source
license at https://github.com/greenelab/tybalt.45
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