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ABSTRACT

The development of single cell RNA sequencing (scRNA-seq) has enabled innovative ap-
proaches to investigating mRNA abundances. In our study, we are interested in extracting
the systematic patterns of scRNA-seq data in an unsupervised manner; thus, we have de-
veloped two extensions of robust principal component analysis (RPCA). First, we present a
truncated version of RPCA (tRPCA), which is much faster and memory efficient. Second, we
introduce a noise reduction in tRPCA with L2 regularization. Unlike RPCA that only
considers a low-rank L and sparse S matrices, the proposed method can also extract a noise
E matrix inherent in modern genomic data. We demonstrate its usefulness by applying our
methods on the peripheral blood mononuclear cell scRNA-seq data. Particularly, the clus-
tering of a low-rank L matrix showcases better classification of unlabeled single cells.
Overall, the proposed variants are well suited for high-dimensional and noisy data that are
routinely generated in genomics.

Keywords: matrix decomposition, principal component analysis, robust PCA, single cell RNA-

seq, truncated singular value decomposition, unsupervised learning.

1. INTRODUCTION

S ingle cell RNA sequencing (scRNA-seq) presents new opportunities to elucidate systematic patterns

of variation underlying biological processes and complex phenotypes. Conventionally, bulk RNA-seq

data provide mean gene expression values from a large number of cells in that biological sample. However, a

mixture of multiple cells that often have different functions or origins may hide relevant information, carry

high variance related to their cellular composition, and might not be reproducible in separate studies (Novelli

et al., 2008; Wills et al., 2013; Gogolewski et al., 2017). With scRNA-seq, we can overcome these challenges

by measuring gene expression at a single cell resolution (Ramsköld et al., 2012; Wang and Navin, 2015).

Nevertheless, scRNA-seq data present new challenges for unsupervised learning methods because of unla-

beled samples, higher dimensionality, dropouts, and sparsity.
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*These authors equally contributed to this study.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 26, Number 0, 2019

# Mary Ann Liebert, Inc.

Pp. 1–12

DOI: 10.1089/cmb.2018.0255

1

D
ow

nl
oa

de
d 

by
 U

cl
a 

L
ib

ra
ry

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
L

os
 A

ng
el

es
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

6/
22

/1
9.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Unsupervised learning techniques have become increasingly popular and useful for exploring and an-

alyzing scRNA-seq data. In particular, principal component analysis (PCA) is most frequently used to

reduce dimensions enabling applications of downstream statistical and machine learning ( Jolliffe, 2002).

Furthermore, closely related to factor analysis and latent variable models, principal components (PCs) help

us to identify hidden and unmeasured structure that arise from biological and technical sources of variation

(Leek, 2010; Bartholomew et al., 2011; Chung and Storey, 2015). Some of biological applications include

tracking definitive endoderm cells (DfE) to explain their linage from embryonic stem cells (Chu et al.,

2016), classifying sensory neuron types (Usoskin et al., 2015), and identifying potentially damaged cells

(Ilicic et al., 2016). To account for an underlying sparse component (e.g., sparsely corrupted data or sparse

latent structure), Candès et al. (2011) proposed robust principal component analysis (RPCA) that can

decompose the input data into low-rank and sparse components.

We build on the strength of RPCA Candès et al. (2011) to introduce a computationally efficient truncated

version and a noise reduction using L2 regularization. In high-dimensional genomic data, the systematic

variation is likely contained in a small number of PCs, whereas lower-ranked PCs contain mostly noise or

signal of low-importance. Therefore, we propose a computationally efficient truncated RPCA (tRPCA),

which uses the top k singular vectors to estimate low-rank and sparse components. Noise reduction of

scRNA-seq data was enabled by introducing an error component, in addition to low-rank and sparse

components that were originally introduced in Candès et al. (2011). Advancements of matrix decompo-

sition have a long history, including non-negative matrix factorization (Lee and Seung, 1999), sparse PCA

(Zou et al., 2006), penalized matrix decomposition (Witten et al., 2009), and more. Inspired by these

methods, our innovation enables separation of low-rank and sparse components, while imposing an L2

penalty on a noise term inherent in large-scale genomic data.

The article is organized as follows. In Section 2, we present two proposed methods based on RPCA,

namely its truncated version and noise reduction with L2 regularization. We provide the algorithms and

their characteristics. Section 3 contains the description and processing procedures for the scRNA-seq data

sets used as the case study. In Section 4, we present the main results of our analysis, as well as pro-

vide some general properties and interpretations of low-rank, sparse, and noise components. Finally, in

Section 5, we summarize our study and discuss the future steps concerning the proposed methods.

2. MATERIALS AND METHODS

PCA is one of the most popular methods for dimension reduction and unsupervised learning. Given a

data set A containing m samples described by n variables, the main objective of PCA is to find a linear

transformation, which maps each sample from A onto a new coordinate system. In this new system, the

coordinates, corresponding to PCs, are ordered by decreasing variances explained. With such representa-

tion, we can reduce the dimensionality of our data with a minimal loss of information as well as determine

important sources of variability. However, PCA has its limitations. With an increasing size and sparsity of

genomic data, PCA becomes inefficient. Furthermore, the outcome of PCA may be easily biased by outline

observations, which is not an expected behavior. The following extensions are an attempt to reduce these

limitations during the analysis of high-dimensional data.

Robust principal component analysis

Our study is based on the decomposition algorithm proposed by Candès et al. (2011) called RPCA. The

aim of the RPCA is to decompose the input matrix A, into low-rank matrix L and sparse matrix S

components. Simultaneously, the algorithm should minimize the following optimization problem:

min
L‚ S
jjLjj� + k1jjSjj1 ‚ where A = L + S

Here we denote jjAjj� as the nuclear norm of matrix A and jjAjj1 as the first norm of a vectorized A

matrix, which are given by the following formulas:

jjAjj� =
X

ri = tr
ffiffiffiffiffiffiffiffiffi
AAT
p� �

‚ and jjAjj1 =
X
i‚ j

jaijj
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In their study, authors discuss the assumptions that matrix A should follow for the decomposition to exist.

Moreover, they prove that the parameter k1 can be set to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
min m‚ nð Þ

p
‚ where m, n are dimensions of the

input matrix A, which, under weak probabilistic assumptions, guarantees proper decomposition into low-

rank and sparse components as m‚ n!1 (Candès et al., 2011). However, it is shown that the spectrum of

feasible values of k1 parameter is broader.

To solve the aforementioned optimization problem, as proposed in Yuan and Yang (2009), we use an

implementation of a special case of the alternating directions method, which belongs to a more general

class of augmented Lagrangian (AGL) multiplier algorithms. In general, the approach is based on mini-

mizing the following AGL operator with respect to L and S matrices alternately:

l(L‚ S‚ Y) = jjLjj� + k1jjSjj1 + ÆY‚ A - L - Sæ +
l
2
jjA - L - Sjj2F

where Y is the Lagrange multiplier matrix, the inner product of matrices Æ �‚� æ is defined as the trace of their

product, that is, ÆA‚ Bæ = tr (ABT )‚ jjAjjF is the Frobenius norm of the form jjAjjF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i‚ j a2
i‚ j

q
and l is the

penalty coefficient.

The outline of the solution is presented in Algorithm 1, in which two shrinkage operators are used:

Ss(x) = sgn(x) �max (jxj - s‚ 0)‚ Ds(X) = USs(S)V�

where s is the shrinkage threshold value and USV� is the Singular Value Decomposition (SVD) of matrix

X. Operator Ss when applied to a matrix is equivalent to Ss applied to each of the matrix elements.

In case of initialization of the l parameter and convergence condition, we set l = m�n
4�jjAjj1

‚ as suggested in

Yuan and Yang (2009) and terminate the algorithm when jjA - L - SjjF � djjAjjF where d = 10 - 7: The

implementation of the RPCA algorithm, which we further extend in this study, is publicly available, stable

R package in Comprehensive R Archive Network (CRAN) repository (Sykulski, 2015).

Algorithm 1 RPCA by alternating directions

1: procedure RPCA(k1)

2: S0‚ Y0)0; l > 0

3: while not converged do

4: compute Li + 1 =Dl- 1 (A - Si + l - 1Yi)

5: compute Si + 1 =Sk1l - 1 (A - Li + 1 + l - 1Yi)

6: compute Yi + 1 = Yi + l � (A - Li + 1 - Si + 1)

Truncated version of robust principal component analysis

First, we consider a truncated version of the algorithm, which calculates the L matrix in the L + S

decomposition in such a way that it is of a given rank k or the lowest possible rank > k0‚ for which the

problem has a solution that meets all its criteria. To achieve that behavior, we use the truncated version of

SVD (implementation from the irlba R package; Baglama et al., 2018) instead of a full SVD and iteratively

modify the l parameter according to the following rule:

l - 1
i + 1 = max(c � l - 1

i ‚ rk + 1)

where rk is the kth singular value from the truncated SVD and c<1 is the AGL constraints penalty growth

rate.

The change of l is significant for the algorithm convergence. As l - 1
i decreases, both threshold operators

shrink less elements in S and singular values of L. Furthermore, the increase of the penalty coefficient for

A = L + S speeds up the convergence. However, in theory, AGL algorithm converges to the constraint

problem even when l - 1
i K0: Simultaneously, when l- 1

i + 1 is set to the value of rk + 1 we increase k, that is, the

number of computed SVD vectors, which is the expected rank of L matrix in ith iteration of the algorithm.

Algorithm 2 significantly reduces the computation time compared with the original RPCA, while pre-

serving its accuracy. However, in the case of biomedical data, the decomposition into low-rank and sparse

matrices is not always feasible or easily obtainable. The input matrix usually has more than a few k

significant singular values that may come from biological activities, technical reasons, or other unknown
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sources. This prevents the recovery of low-rank component as when subtracted from the input A matrix

they do not constitute a sparse matrix. We may interpret these perturbations in the L matrix as a noise or

low-importance information. Since it does not have a sparse nature, we extend the decomposition into

L + S + E‚ where the matrix E contains a dense noise controlled for using the L2 norm on vectorized matrix

A (i.e., Frobenius norm).

Algorithm 2 Truncated-RPCA

1: procedure tRPCA (k1‚ k0‚ c)

2: S0‚ Y0)0; l0 > 0; k = k0

3: while not converged do

4: compute Li + 1 =Dl - 1
i

(A - Si + l - 1
i Yi)

5: compute Si + 1 =Sk1l- 1
i

(A - Li + 1 + l- 1
i Yi)

6: compute Yi + 1 = Yi + li � (A - Li + 1 - Si + 1)

7: compute l - 1
i + 1 = max(c � l - 1

i ‚ rk + 1)

8: if l - 1
i + 1 == rk + 1 then increase k

Noise reduction

To relax the assumptions on the input matrix, we introduce an additional matrix E to the decomposition.

Now, the extended problem can be reformulated as follows:

A = L + S + E

min
L‚ S‚ E

jjLjj� + k1jjSjj1 + k2jjEjjF

The E matrix is meant to contain the information of low importance or noise, which is carried by the

lowest singular values in the SVD decomposition of L matrix. To solve this problem, we extend the

alternating directions approach and we minimize the newly defined AGL operator also with respect to the E

matrix:

l(L‚ S‚ E‚ Y) = jjLjj� + k1jjSjj1 + k2jjEjjF +

+ ÆY‚ A - L - S - Eæ +
l
2
jjA - L - S - Ejj2F

Solving @l
@E

= 0 results in

E
k2

jjEjjF
+ l

� �
= Y + l(A - L - S)

Let C = Y + l(A - L - S)‚ then 9d2R E = d � C: Assuming that C 6¼ 0 we determine the value of d. Since

d < 0 results in a contradiction, we assume that d � 0 we have

d =
jjCjjF - k2

ljjCjjF
=

1

l
1 -

k2

jjCjjF

� �
� 0

which holds for jjCjjF � k2. We define the operator

Es(X) = max 0‚ 1 -
s
jjXjjF

� �
� X

which describes how to determine the matrix E that minimizes the l operator.

Finally, we extend the algorithm of tRPCA by applying the defined operator Es. In our approach, we

apply the operator twice, both, after minimization with respect to L and S, to filter out the potential

mismatched components from both matrices. It is worth to emphasize that in case of large k2 > jjCjjF we

end up with the previously introduced tRPCA procedure. Moreover, in every iteration we adjust k pa-

rameter to be a minimal value such that Dl - 1 operator can be properly applied. Algorithm 3 presents the

pseudocode of the whole decomposition procedure, which we call tRPCA with L2 regularization

(tRPCAL2).
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Algorithm 3 Truncated-RPCA with L2 Regularization

1: procedure tRPCAL2 (k1‚ k2‚ k0‚ c)

2: S0‚ Y0‚ E0)0 ; l0 > 0; k = k0

3: while not converged do

4: compute Li + 1 =Dl- 1
i

(A - Si - Ei + l - 1
i Yi)

5: compute E�i + 1 = Ek2l- 1
i

(A - Si - Li + 1 + l- 1
i Yi)

6: compute Si + 1 =Sk1l - 1
i

(A - E�i + 1 - Li + 1 + l- 1
i Yi)

7: compute Ei + 1 = Ek2l- 1
i

(A - Si + 1 - Li + 1 + l - 1
i Yi)

8: compute Yi + 1 = Yi + li � (A - Ei + 1 - Li + 1 - Si + 1)

9: compute l - 1
i + 1 = max(c � l - 1

i ‚ rk + 1)

10: if l - 1
i + 1 == rk + 1 then increase k

11: else k = 1 + argmax j (rj > l - 1
i + 1)

Low-rank matrix clustering

To examine the resulting decomposed matrix A = L + S + E we use the following clustering procedure. Since

L is a low-rank matrix (of rank k) with a known SVD decomposition L = USV�‚ we cluster all cells by their

k-dimensional representation US using the K-means algorithm, with the most suitable number of clusters

(Macqueen, 1967; Hartigan and Wong, 1979; Lloyd, 1982). To visualize the clustering outcome in two dimen-

sions, we apply the T- Distributed Stochastic Neighbor Embedding (t-SNE) algorithm (van der Maaten, 2014).

3. SINGLE CELL TRANSCRIPTOMIC DATA

In this study, we analyzed the publicly available scRNA-seq data sets by 10 · Genomics (https://

www.10xgenomics.com/). Specifically, our results were obtained using the scRNA-seq data sets experi-

ments performed on peripheral blood mononuclear cells (PBMCs) from a healthy donor. PBMCs are

primary cells with relatively small amounts of RNA (1pg RNA/cell). The final data set contains 2700

individual single cells, sequenced on Illumina NextSeq 500 with *69,000 reads per cell.

Along with the 2700 PBMCs data set, we have used the scRNA-seq data retrieved from homogeneous

samples of specific cell types that constitute the PBMC sample. Each type-specific data set has >90% of

purity for each subtype by fluorescence-activated cell sorting (Basu et al., 2010). The transcriptomes were

used in Zheng et al. (2017) and described the following cell types and subtypes: CD14+ monocytes, CD56+

natural killer cells, CD19+ B cells, CD34+ cells, and subfamilies of T cells: CD8+ cytotoxic T cells, CD8+/

CD45RA+ naive cytotoxic T cells, CD4+/CD45RO+ memory T cells, and CD4+ helper T cells (Fig. 1).

Each of the aforementioned data sets is given in the form of a count matrix A, where the ith row

represents a gene and the jth column represents an individual cell. The value of aij is the number of counts

of the ith gene for the jth cell. Since our method is meant to filter out the sparse signal in S and the dense

noise in E, we do not apply the typical quality control step. All cells are used in the analysis and we expect

all perturbations (e.g., biological or technical outliers or fluctuations) that break the linear behavior to be

captured by S + E component of the decomposition.

In addition, for each data set, we filter out genes that had zero counts for all cells in a given set. Finally,

the number of counts for each cell was normalized by its total number of counts and log-scaled. Fur-

thermore, on the processed 2700 PBMCs data matrix is consequently denoted as A. Out of >32,000 genes,

16,634 genes that had nonzero number of counts mapped for at least one cell are retained.

Test set construction

To test our method, we set the labeling of cells from the PBMCs data set. For each available type-specific

data set, we calculate its average transcriptome. However, since the correlation between averaged subtype-

specific transcriptomes within T cell family is relatively high, for the purpose of this study, we label the cells

with one of the five possible types: (1) monocytes, (2) natural killers, (3) B cells, (4) T cells, and (5) unknown.

T cells family transcriptome is designated as an average among all T cells subtypes transcriptomes.

The criteria for labeling consist of two conditions. First, a cell is assumed to be of an unknown type if it

does not correlate with any of the given profiles with a Pearson correlation >0:5: Second, the cell is
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assumed to be of a specific type if the difference between its correlation and correlations with other types is

greater than a threshold value set to 0:025‚ otherwise it is assumed to be unknown.

Even though there are no transcriptomic profiles available for other cell types, such as megakaryocytes

(depicted in Fig. 1a), we are aware that they may exist in our data set and thus expect to find them using our

decomposition method. Please note that the aforementioned correlation-based labeling in case of 68,000

PBMC data set resulted in low percent of clearly assigned cell types; thus, all results are presented for 2700

cells. In the following section, we present the outcome of the analysis of the data using our truncated

version of RPCA with Gaussian noise reduction.

4. RESULTS AND DISCUSSION

The proposed trPRCAL2 explains the input data (A) in terms of compressed, low-rank information (L),

sparse signal (S), and noise (E). To validate our method on real data and evaluate its suitability for genomic

data analysis, we use the scRNA-seq 2700 PBMCs data set. We report that tRPCAL2 algorithm converged

after 49 iterations, taking about 97 seconds (compared with 20 seconds PCA from R prcomp). Owing to the

high background variance, tRPCA and RPCA did not converge before 1000 iterations. All algorithms were

run on AMD Opteron(tm) Processor 6380, 64 · 2.5 GHz CPU, 256 GB RAM, Gentoo Linux.

Clustering through low-rank matrix

First, we validate the quality of the dimension reduction by clustering cells basing on their low-rank repre-

sentation in the L matrix. Using the hierarchical clustering algorithm (Johnson, 1967; Murtagh, 1985) we

determined five clusters, which were visualized using t-SNE (van der Maaten, 2014) (Fig. 2). In contrast to the

expected cell types (derived from correlation with type-characteristic transcriptomes), we observed that the

obtained clustering determines four main families of cells from the PBMCs data set. In addition, one more

cluster separating NK and T cell family clusters was discovered. The cluster is described by increased activity of

CD8A and CD8B (Bonferroni adjusted p value <10 - 3) and regular activity of CD4, CD45 and CD25 genes in

contrast to other cells. This characteristic suggests a cluster of cells mostly composed od CD8 + T cytotoxic cells

and explains its similarity to NK cells (Ohkawa et al., 2001; Zheng et al., 2017). Other dimension reduction,

clustering, and visualization techniques were also compared [e.g., PCA, Isomap (Bartenhagen, 2018) or Single-

cell Interpretation via Multi-kernal Learning (SIMLR) (Ramazzotti et al., 2018)], but since their quality was at

most comparable we present results for commonly used t-SNE algorithm.

Next, we compared our method of dimension reduction with the method analogous to the one used in Zheng

et al. (2017). With SVD, we calculate top 10 singular values (in pursuance of the L matrix rank) of the PBMC

FIG. 1. PBMCs overview. (a) Schematic representation of t-SNE projection of 68,000 PBMCs data set with cell

subtypes clusters detected by correlation to type-specific transcriptomes adapted from Zheng et al. (2017). (b) The

correlation heatmap of all PBMCs type-specific (averaged, normalized, and log-scaled) transcriptomes. PBMC, pe-

ripheral blood mononuclear cell; t-SNE, T- Distributed Stochastic Neighbor Embedding.
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data matrix (A) using R irlba package. Then, the input data were approximated through the reduced 10-

dimensional space. We perform the hierarchical clustering of all cells for the most characteristic marker genes

per cell type (selected from the literature) on the described SVD-based approximation and the L matrices. The

aim is to verify how well the dimensionality reduction preserves the most reliable biological information related

to type-specific marker genes. It appeared that not only the L matrix guarantees more accurate clustering, but

also it contains more pronounced differences of the signal between clusters of both cells and genes (Fig. 3).

Monocyte subtypes and coexpression detection

The literature suggests existence of at least three subtypes of monocytes in PBMCs (Ziegler-Heitbrock

et al., 2010) Their characterization can be based on the presence of CD14 (coded by CD14 gene) and CD16

(coded by FCGR3A, FCGR3B genes) clusters of differentiation: (1) the classical monocyte with high

activity of CD14 (CD14++ FCGR3A-), (2) the intermediate monocyte with high activity of CD14 and low

activity of FCGR3A (CD14++ FCGR3A+), and (3) the nonclassical monocyte with low activity of CD14

and coexpressed FCGR3A (CD14+ FCGR3A++).

Interestingly, such classification of subtypes can be found using the low-rank signal from the L matrix

(Fig. 4). The activity of CD14 is almost uniquely distributed among the cluster of monocyte cells and,

simultaneously, the activity of FCGR3A changes with the gradient defining the cell subtype progression among

all monocytes. Moreover, Figure 5 shows how the original expression values are distributed among decom-

position matrices. The sparse peaks of activity are stored in S and the linear part in L. E matrix contained

remaining noise of mean 0 and the standard deviation of order 10 - 4 for both CD14 and FCGR3A.

In addition, the low-rank L matrix well tracks and recovers coexpression patterns between genes.

Namely, the activity of B cells can be detected by the presence of CD79 heterodimer composed of CD79A

and CD79B proteins (Chu and Arber, 2001). Their coexpression measured in terms of correlation was at the

level of 0:227‚ whereas after the decomposition their low-rank signal had correlation of level 0:995

(Fig. 5). Similarly, the correlation between FCGR3A and GNLY characterizing natural killer cells (Crinier

et al., 2018) increased from 0:400 to 0:949: Naturally, these observations are possible thanks to filtering out

the sparse and noise signals. Nonetheless, this type of information is retrieved by the proposed method in an

unsupervised manner, and may suggest new coexpression patterns.

Sparse signal interpretation

The presence of megakaryocytes in our PBMC data set, reported in the population of PBMCs sample

from Zheng et al. (2017), was not evident using the low-rank L matrix, even though a small cluster of cells

of unknown type was separated by t-SNE (Fig. 2) and an analogous cluster depicted in Figure 1a for 68,000

FIG. 2. Clustering of 2700 PBMCs. In both panels, cells are visualized using t-SNE (perplexity = 35) ran on the

10-dimensional representation of the original input data (A) derived from L matrix. (a) Colors correspond to cell types

inferred from correlation of each cell original transcriptome (columns of A) with type-specific PBMCs transcriptomes. We

have determined 630 monocytes (orange), 251 B cells (pink), 437 natural killer cells (blue), and 700 T cells (yellow).

Remaining 682 (gray) are assumed to be an unknown or tentative type. (b) Colors correspond to five clusters determined by

hierarchical clustering method. Colors of the clusters correspond between predicted and original clusters for clarity.
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PBMCs data). Aiming in megakaryocytes detection, we performed the hierarchical clustering on the subset of

unknown type cells and only genes that had at least one nonzero entry in the sparse S matrix. This resulted in

recovery of a well-separated cluster of nine cells. Further analysis confirmed that the cluster is characterized

by high overexpression of PF4 gene, which is a well-known marker for mature megakaryocytes (Adachi et al.,

1991), in comparison with other unknown cell types.

FIG. 3. Marker gene-based clustering comparison. The figure compares clustering of cells of known type with

literature-based marker genes characterizing the analyzed types of PBMCs. The left panel is related to the signal

represented in terms of the truncated SVD (10 highest singular values used). The right panel corresponds to the signal

stored in the L matrix from trPCAL2. Top bars encode the original correlation-inferred cell types. Colors in the heatmap

describe the activity level of a gene from lowest (red) through average (black) up to highest (green). SVD, singular

value decomposition; trPCAL2, tRPCA with L2 regularization.

FIG. 4. CD14 and FCGR3A activity levels. Panels present the activity of monocytes marker genes. (a, b) Figures

present the activity of CD14 and FCGR3A genes among all cells, respectively. The level of gene activity (lowest to

highest) is spanned from red, through black, to green color scale.
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Noise reduction and parameters

Finally, we want to discuss the importance of the noise matrix E and selection of k1 and k2 parameters.

The final decomposition quality, in terms of information distribution among three matrices, is mainly based

on the choice of these crucial parameters.

For the purpose of this study, we have set k1 = 0:016 and k2 = 10:0‚ which resulted in L + S + E de-

composition with the following norms of the (vectorized) matrices: jj � jj� : 5:753‚ 60:289‚ 57:881;
jj � jj1 : 3398:162‚ 60:289‚ 2670:012; jj � jj2 : 4:265‚ 2:826‚ 1:440 (L, S, E, respectively).

Selection of the mentioned values was supported by the grid-based search through the parameter space.

We have run tRPCAL2 decomposition on the PBMC data for 150 different, evenly distributed, pairs

(k1‚ k2) 2 0:001‚ 0:05½ � · 5‚ 15½ � setting l0 = 147:28 using the improved formula for the initiation of the l0

parameter that takes into account the sparsity of an input data matrix A with k rows and l columns:

l0 =
jfai‚ j : ai‚ j 6¼ 0gj
4 � k � l �

P
i‚ j

jai‚ jj

The new formula is thus a ratio of the percent of nonzero values to four times the sum of absolute values

in the data matrix. To determine the order of magnitude and search ranges for both parameters, we have

made use of the theory described in Candès et al. (2011) as well as estimations based on the properties of

the AAT matrix trace operator.

Since tRPCAL2 algorithm mixes L1 and L2 norms, which describe different mathematical properties and

in this sense are incomparable, the final decomposition depends not only on relative or absolute values of

chosen k1‚ k2 parameters, but also on distributions of elements in the decomposed matrix. To approximate

the relationship between k1 and k2 and their influence on the final composition of L, S, and E matrices, we

summarized the results from simulation study and we conclude about properties such as the rank of the

resulting L matrix, and relative and absolute sparsity of the S matrix (Fig. 6).

First, we systematize the boundary behaviors of the algorithm. Namely, when k1‚ k2 !1 the decomposition

will result in L = A‚ S = E = 0:Next, for fixed k1 and k2 ! 0 the information shifts to E matrix and E = A‚ L = S = 0:
Similarly, fixed k2 and k1 ! 0 gives S = A‚ L = E = 0 (Fig. 6a). Although intuitive, these observations depend on

different convergence rate, and thus flow of the information among resulting matrices. Here, based on the described

set of simulations, we indicate several observations regarding signal distribution (Fig. 6b): (1) the rank of matrix L

FIG. 5. Coexpression patterns. The distribution of the original expression levels among S and L matrices for marker

genes of monocytes (top) and B cells (bottom). Consecutive panels present (i) the normalized log-transformed input

data from A matrix, (ii) low-rank signal in L matrix, and (iii) sparse signal in S matrix. In each panel, cells (x-axis) are

sorted by the activity level (y-axis) of first marker gene (CD14 for monocytes and CD79A for B cells).
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FIG. 6. Properties of the algorithm. Each row presents value of some measurement as a function of product (left) and

quotient (right) of k1‚ k2 parameters, that tRPCAL2 was run with. (a) Norm values of each matrix and the objective

function value. (b) The number of singular values of L matrix (top) and logarithm of sparsity (percent of nonzero matrix

entries) of S matrix (bottom). On each plot, orange line corresponds to k1‚ k2 parameters finally used in our study.
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increases (2) sublinearly as a function of k1 and fixed k2; (3) polynomially as a function of k2 and fixed k1; (4) for

fixed k2 sparsity (percent of nonzero elements) of S decreases exponentially as a function of k1:
Finally, we observed that the distribution of E elements is a mixture of zero-centered Gaussian and low-

variance Gaussian concentrated around non-negative k2-dependent value. We reason that since tRPCAL2 is

an optimization of linear combination of norms, E matrix captures parts of low-rank and sparse components

bringing such mixture. One way to overcome this effect was described in Zhang et al. (2016) through their

truncated nuclear norm minimization for RPCA.

More formal investigation of the tRPCAL2 theoretical properties with respect to k1‚ k2 and L, S, E

matrices could be of high interest in terms of future research.

5. CONCLUSIONS

In this article, we introduce an extension of RPCA. We propose to decompose the input matrix into low-

rank L, sparse S, and noise E components. Thanks to the reduction of noise using the L2 penalty, we restore

the inner structure of the matrix. Our results suggest that our algorithms may better approximate the

underlying systematic variation in the input data, as well as recognize the sparse perturbation signal of the

data. We present the case study based on the scRNA-seq data from 2700 PBMCs. The method provides

relatively fast and accurate dimension reduction and clustering of the high-dimensional data detecting

different subtypes within a given cell type, coexpression patterns, and novel subtypes.

One possible direction for the further research is to derive precise formulas for k1 and k2 parameters that

guarantee optimal solutions of the decomposition problem. So far, simulation-based selection of the pa-

rameters is time consuming. Ideally, a k1‚ k2 parameters selection method would result with the most

natural L + S + E decomposition, taking into account user’s expectations in terms of, for example, Bayesian

priors to relative magnitudes, and to other components’ statistics. The applicability of our method to other

types of data, we also see as a promising direction of a further research. Preliminary results of video and

image analysis, not described in this article, suggest that the method can be successfully harnessed in the

field of video surveillance and image analysis. The current implementation of the tRPCAL2 algorithm is

available online: https://github.com/macieksk/rpca as a development R package.
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